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Abstract

A general and flexible framework for the wavelet-based decompositions of stationary time
series in discrete time, called Adaptive Wavelet Decompositions (AWDs), is introduced. It is
shown that several particular AWDs can be constructed with the aim of providing decomposition
(approximation and detail) coefficients that exhibit certain nice statistical properties, where the
latter can be chosen based on a range of theoretical or applied considerations.

AWDs make use of a Fast Wavelet Transform-like algorithm whose filters - in contrast with
their counterparts in Orthogonal Wavelet Decompositions (OWDs) - may depend on the scale. As
with OWDs, this algorithm has good properties such as computational efficiency and invariance
to polynomial trends.

A property whose pursuit plays a central role in this work is the decorrelation of the detail
coefficients. For many time series models (e.g., FARIMA(0, δ, 0)), the AWD filters can be defined
so that the resulting AWD detail coefficients are all (exactly) decorrelated. The corresponding
AWDs, called Exact AWDs (EAWDs), are particularly useful in simulation of Gaussian stationary
time series if the associated filters have a fast decay. The proposed simulation methods generalize
and improve upon existing wavelet-based ones.

AWDs for which the detail coefficients are not exactly decorrelated, but still more decorrelated
than those of OWDs, are referred to as approximate AWDs (AAWDs). They can be obtained
by truncating EAWD filters, or by adopting some of the existing approaches to modeling the
dependence structure of the OWD detail coefficients (e.g., Craigmile et al. (2005)). AAWDs
naturally lead to new wavelet-based Maximum Likelihood estimators. The performance of these
estimators is investigated through simulations and from some theoretical standpoints. The focus
in estimation is also on Gaussian stationary series, though the method is expected to work for
non-Gaussian stationary series as well.

1 Introduction

Orthogonal Wavelet Decompositions (OWDs, in short) are useful in several areas of Time Series
Analysis. For example, they are used to analyze and to synthesize (Gaussian) long memory time
series (Abry, Flandrin, Taqqu and Veitch (2003), Pipiras (2005), Moulines, Roueff and Taqqu (2008))
and in connection to unit roots (Fan and Gençay (2006)). See also a nice monograph on the subject
by Percival and Walden (2000), and many more references therein. Other applications, but in
continuous time, concern locally stationary time series (Mallat, Papanicolaou and Zhang (1998),
Nason, von Sachs and Kroisandt (2000)), multifractal processes (Ossiander and Waymire (2000),
Resnick, Samorodnitsky, Gilbert and Willinger (2003), Jaffard, Lashermes and Abry (2006)).
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An appealing property of OWDs in Time Series Analysis is the decorrelation property of detail
(wavelet) coefficients. This fact has by now become an integral part of the “folklore” and has been
formalized to some degree. The most studied cases are probably those of fractional Brownian motion
and long memory time series. Flandrin (1992), Tewfik and Kim (1992), Dijkerman and Mazumdar
(1994) studied dependence structure of detail coefficients of fractional Brownian motion. These
authors found that the decay of correlations between detail coefficients is controlled by the number
of zero moments of the underlying wavelet. Similar findings were also reported for long memory time
series. In particular, within scales, the dependence structure of detail coefficients was found to be
weak and well-modeled as AR(1) or AR(2) series (see, for example, Craigmile, Guttorp and Percival
(2005)). More recently, Craigmile and Percival (2005) showed that detail coefficients across scales
become decorrelated asymptotically, as the length of the wavelet filter increases. See also McCoy and
Walden (1996), Craigmile (2005), Craigmile et al. (2005), and Vannuci and Corradi (1999), Delbeke
(1998) for other studies concerning dependence structure of detail coefficients.

The decorrelation properties described above have been exploited in at least two applications of
OWDs:

• simulation, and

• maximum likelihood estimation (MLE)

of typically Gaussian stationary time series. For example, OWD-based simulation can be found in
Craigmile (2005), and OWD-based MLE is the subject of Craigmile et al. (2005), Section 9 in Percival
and Walden (2000), Jensen (1999). The interest in these OWD-based methods is described in the
above references, and often refers to computational efficiency, ease of implementation and invariance
to polynomial trends. Two basic simplifying frameworks are used in these studies: either detail
coefficients are assumed to be uncorrelated within and across scales, or decorrelation is assumed
across scales but dependence is modeled within scale by AR series. Similar simplifying assumptions
are also made in other OWD applications, for example, Veitch and Abry (1999). Two exceptions
are Moulines, Roueff and Taqqu (2007, 2008), where theoretical results are established without
simplifying assumptions.

Simplifications are made because dealing with the exact dependence structure of the detail coef-
ficients is generally quite difficult. More specifically, OWD decomposes a time series X0 = {X0

n}n∈Z
into approximation coefficients Xj = {Xj

n}n∈Z and detail coefficients ξj = {ξj
n}n∈Z, j ≥ 1, according

to the formulae (the so-called Fast Wavelet Transform or FWT)

Xj =↓2 (u ∗Xj−1), ξj =↓2 (v ∗Xj−1), j ≥ 1, (1.1)

where ∗, x and ↓2 denote, respectively, convolution, time reversion of x and down-sampling by the
factor of 2 (see Section 2 for more details) and u, v are suitable sequences, called here OWD (scaling
and wavelet) filters. If X0 is a stationary time series, detail coefficients ξj at a fixed scale j, for
example, are also stationary and have the spectral density

fξj (w) =
1
2j

2j−1∑

n=0

fX0

(
w + 2πn

2j

) ∣∣∣∣V̂ j

(
w + 2πn

2j

)∣∣∣∣
2

, (1.2)

where fX0 is the spectral density of the series X0, V̂ j(w) = v̂(2j−1w)
∏j−1

k=1 û(2k−1w) and the “hats”
indicate the Fourier transform throughout (see Section 3.1 for more details). The orthonormality of
OWD ensures that, for any j ≥ 1,

1
2j

2j−1∑

n=0

∣∣∣∣V̂ j

(
w + 2πn

2j

)∣∣∣∣
2

≡ 1. (1.3)
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In particular, if fX0(w) ≡ const (i.e. X0 is a white noise), then fξj (w) ≡ const as well (i.e. ξj is a
white noise as well). Otherwise, i.e., if fX0(w) 6≡ const, the detail coefficients ξj have a nontrivial
dependence structure.

In this work, we introduce several new wavelet-based decompositions of stationary time series in
discrete time. More precisely, we consider:

• Adaptive Wavelet Decompositions (AWDs),

• Exacts AWDs (EAWDs), and

• Approximate AWDs (AAWDs).

In brief, AWDs are wavelet-based decompositions where scaling and wavelet filters in (1.1) can depend
on a scale j. These filters can be chosen, in particular, so that the detail coefficients in (1.1) with
AWD filters are exactly decorrelated. The resulting decompositions are called EAWDs. When the
detail coefficients are not exactly decorrelated, but still more decorrelated than those obtained from
OWDs, we refer to the resulting AWDs as AAWDs. To attain decorrelation, EAWD and AAWD
filters need to involve the correlation structure of the considered time series. Since this structure is
unknown in some applications (such as MLE), these decompositions will not be decorrelating when
applied to time series with “misspecified” correlation structure. The more general framework of
AWDs also allows one to analyze such situations. We provide next a more detailed description of
these new decompositions, followed by a discussion of their applications to simulation and MLE.

AWDs are defined in the same way as OWDs except that OWD filters u, v are now replaced by
AWD filters U j

d , V j
d which can depend on a scale j and are defined through

U j
d = cj ∗ u, V j

d = d
j ∗ v, (1.4)

for some “external” sequences cj , dj . The approximation coefficients Xj and the detail coefficients ξj

of AWD are defined as in (1.1) but by using filters U j
d , V j

d instead of u, v. In the definition of AWDs,
the sequences cj , dj are essentially arbitrary (apart from all quantities being well-defined) and hence
AWDs have a general and flexible structure. (In particular, taking ĉj(w) ≡ 1 and d̂j(w) ≡ 1 leads to
OWDs.) For AWDs, detail coefficients at a fixed scale j, for example, now have the spectral density

fξj (w) =
1
2j

2j−1∑

n=0

fX0

(
w + 2πn

2j

) ∣∣∣∣D̂j

(
w + 2πn

2j

)∣∣∣∣
2 ∣∣∣∣V̂ j

(
w + 2πn

2j

)∣∣∣∣
2

, (1.5)

where D̂j(w) = d̂j(2j−1w)
∏j−1

k=1 ĉk(2k−1w) (cf. (1.2)). AWDs also inherit other nice properties of
OWDs such as invariance to polynomial trends.

EAWDs are AWDs whose detail coefficients are exactly decorrelated (within and across scales).
It should not be surprising that EAWDs are possible for suitable choices of “external” sequences
cj , dj . In view of (1.5) and (1.3), for example, detail coefficients of AWD are decorrelated at a fixed
scale j as long as

fX0(w)|D̂j(w)|2 = fX0(w)|d̂j(2j−1w)|2
j−1∏

k=1

|ĉk(2k−1w)|2 ≡ 1, j ≥ 1. (1.6)

A number of sequences cj , dj satisfy (1.6). For example, one can take |ĉ1(w)|2 = |d̂1(w)|2 = fX0(w)−1,
|ĉj(w)|2 ≡ |d̂j(w)|2 ≡ 1, j ≥ 2. But this is obviously not the only possibility. Among various possible
EAWDs, we are particularly interested in those whose filters U j

d , V j
d are finite or exhibit a fast decay

to zero. (Why this is of interest is explained below in this section.) We will show that it is possible
to construct EAWDs with finite or fast decaying filters for a wide range of time series models, and
that this possibility seems particularly suitable in at least two situations of interest, namely,
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• long memory, and

• near unit roots.

It is quite intriguing that these are exactly the two situations where OWDs were found particularly
useful (see the discussion in the beginning of this section). As will be seen, the number of zero
moments of the underlying OWD filters plays here a fundamental role. Moreover, in these decompo-
sitions, approximation coefficients at various analysis scales typically turn out to be dependent. It
also goes unsaid that in order to attain decorrelation, EAWDs filters U j

d , V j
d have to depend on the

correlation structure of the series X0 itself.
Finally, AAWDs refer to, somewhat loosely, AWDs whose filters U j

d , V j
d are of finite practical

length and whose detail coefficients are expected to be more decorrelated than those obtained from
OWDs. Two types of AAWDs are considered in this work:

• EAWD-based AAWDs, and

• AR-based AAWDs.

EAWD-based AAWDs are obtained by truncating EAWD filters U j
d , V j

d when the latter are infinite
(and have a fast decay). AR-based AAWDs formalize earlier approaches (e.g. Craigmile et al. (2005))
that model OWD detail coefficients using AR models. In this work, for the sake of illustration and
understanding, we provide various EAWDs and AAWDs of FARIMA(0, δ, 0), AR(p) and MA(q)
models.

Because of the exact decorrelation property, EAWDs are particularly suitable to generate Gaus-
sian stationary series. The scheme (1.1) with AWD filters (1.4) is called FWT at decomposition.
There is also such FWT at reconstruction and that is the scheme which is used for simulation. Having
associated EAWD filters with a fast decay allows one to take them of small length in practice. The
resulting method is most natural for wavelet-based simulation and improves upon earlier wavelet-
based simulation approaches. For FARIMA(0, δ, 0) series, for example, it is also faster than the
popular simulation method based on Circulant Matrix Embedding (Dietrich and Newsam (1997)).

Application to MLE carries quite a different flavor from that to simulation. First, MLE uses
FWT at decomposition, not FWT at reconstruction. Second, whereas a particular model for the
series to be generated is fixed in simulations, a whole class of models is considered in MLE and
the exact model (within the considered class of models) of an analyzed time series is not known
in advance. In order to explain basic ideas behind this application, suppose the class of models of
interest is that of FARIMA(0, δ, 0) series. We can construct EAWDs for the latter with fast decaying
filters. Moreover, these filters can be truncated in practice to obtain EAWD-based AAWD. Let ξj,δ

be detail coefficients of an analyzed time series (FARIMA(0, δ0, 0) series with a true parameter δ0)
obtained from such AAWD when parameter δ is used. The estimator of the true parameter δ0, for
example, is then defined as

δ̂ = argmin
δ

J∑

j=1

2−j

nj

nj∑

n=1

(ξj,δ
n )2, (1.7)

where nj is the number of detail coefficients available at scale j (that is, not affected by the boundary
at scale j).

The estimation based on (1.7) works, in fact, quite well. We shall explain reasons for this in detail
below (see Section 7). Moreover, we will argue that (1.7) can be viewed as an approximate (Gaussian)
ML estimator, and hence that it has the variance of ML estimators in the asymptotic sense. In finite
samples, however, at least for sample sizes smaller than 211 = 2, 048, we find that the estimator (1.7)
has a slightly larger Mean Squared Error than that of the Whittle approximate ML estimator or, for
that matter, the OWD estimator. This effect for smaller sample sizes will be explained by making
an argument in the Fourier domain. Despite its slight inferiority in smaller samples, the proposed
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estimator has an interesting structure, arises naturally in the AWD framework, and sheds light on
various relations between Fourier and wavelet methods. The focus in estimation is also on Gaussian
stationary series, though the method is expected to work for non-Gaussian stationary series as well.

In its approach, this study is also closest to our parallel work on AWDs in continuous time in
Didier and Pipiras (2008). See also Meyer et al. (1999) and a series of papers by Unser and Blu
(2007), Blu and Unser (2007) and references therein. Despite some similarities, however, the focus
and content of this work are very different from those in Didier and Pipiras (2008).

The rest of the paper is organized as follows. In Section 2, we gather some basic notions and
facts on time series and wavelets that will be used throughout the paper. In Section 3, we introduce
and examine AWDs of stationary time series, and their particular variants EAWDs and AAWDs.
Examples are considered in Sections 4 and 5. Applications of AWDs to simulation and MLE can be
found in Sections 6 and 7. Proofs have been moved to Section 8, and all tables and figures can be
found at the end of the paper.

2 Preliminaries on time series and wavelets

We focus throughout on stationary time series X = {Xn}n∈Z in discrete time. Stationarity refers to
2nd order (wide-sense) stationarity, that is, the case when, for any h ∈ Z,

EXk+hXh = EXkX0 =: r(k), k ∈ Z, (2.1)

where r is the autocovariance function. We suppose, in addition, that a time series X is Gaussian.
(In this case, decorrelation is equivalent to independence.) This assumption is not restrictive. Since
the law of a Gaussian time series is determined by second moments, our arguments can be based
only on considerations of the second moments. After removing Gaussianity, the same arguments then
apply to 2nd order stationary time series. In our applications, however, we consider only Gaussian
time series.

We will also work only with linear time series

Xn =
∞∑

k=−∞
akεn−k = (a ∗ ε)n, n ∈ Z, (2.2)

where a = {ak} ∈ l2(Z) and ∗ denotes the usual convolution. In the Gaussian case, ε = {εn} are
independent, N (0, 1) random variables. We will refer to such ε as a Gaussian white noise (sequence).
One of the main tools we will use is the spectral representation of X in (2.2) (see e.g. Brockwell and
Davis (1991)):

Xn =
∫ 2π

0
einwdW (w) =

∫ 2π

0
einwâ(w)dZ(w), n ∈ Z, (2.3)

where W (w), w ∈ (0, 2π), is a Gaussian, orthogonal (independent) increment, complex-valued process
such that EdW (w)dW (w′) = |â(w)|2dw1{w=w′}/2π, Z(w), w ∈ (0, 2π), is a Gaussian, orthogonal
(independent) increment process such that EdZ(w)dZ(w′) = dw1{w=w′}/2π, and

â(w) =
∞∑

k=−∞
ake

−ikw, w ∈ (0, 2π), (2.4)

is the discrete Fourier transform of a sequence a ∈ l2(Z). The function |â(w)|2/2π is known as a
spectral density of X. Observe also that r = a ∗ a, r̂(w) = |â(w)|2, where {xk} = {x−k} stands for
time reversal of a sequence {xk}.

In regard to wavelets, since we work in discrete time, we will use the so-called OWD scaling and
wavelet filters, also called Conjugate Mirror Filters, associated with an orthogonal Multiresolution
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Analysis (MRA). See, for example, Mallat (1998). OWD filters are made up of a low pass filter
u = {un} and a high pass filter v = {vn} satisfying a number of properties. In particular, for any
w ∈ R,

|û(w)|2 + |û(w + π)|2 = 2, (2.5)

v̂(w) = e−iwû(w + π) (2.6)

and hence
|v̂(w)|2 + |v̂(w + π)|2 = 2, (2.7)

û(w)v̂(w) + û(w + π)v̂(w + π) = 0. (2.8)

Popular OWD filters are those of Daubechies with N zero moments, N ≥ 1. For fixed N , both low
and high pass Daubechies filters are of finite length 2N . Moreover, for any OWD filters of finite
length and N zero moments, it is also known (e.g. Mallat (1998), p. 241) that

û(w) = (1 + e−iw)N û0,N (w), v̂(w) = (1− e−iw)N v̂0,N (w), (2.9)

with u0,N , v0,N of finite length as well.
OWD filters u and v appear in the (orthogonal) Fast Wavelet Transform (FWT) of a deterministic

sequence x = {xn}. FWT relates decomposition coefficients across scales. Setting a0 = x, at the
decomposition step, one defines the approximation and detail coefficients as

aj =↓2 (u ∗ aj−1), dj =↓2 (v ∗ aj−1), j = 1, 2, . . . , (2.10)

where (↓2 x)k = x2k is the downsampling (decimation) by factor 2 operator. At the reconstruction
step, one has

aj = u∗ ↑2 aj+1 + v∗ ↑2 dj+1, j = 0, 1, . . . , (2.11)

where (↑2 x)k = xk/21{even k} + 01{odd k} is the upsampling by factor 2 operator. One can easily
verify that

(̂↓2 x)(w) =
1
2

(
x̂
(w

2

)
+ x̂

(w

2
+ π

))
, (̂↑2 x)(w) = x̂(2w). (2.12)

3 Adaptive Wavelet Decompositions

Definition and basic properties of Adaptive Wavelet Decompositions can be found in Section 3.1.
Sections 3.2 and 3.3 introduce what we call Exact and Approximate Adaptive Wavelet Decomposi-
tions.

3.1 Definition and basic properties of AWDs

Let X0 = a0 ∗ ε0 be a Gaussian, stationary time series with a0 ∈ l2(Z) and a Gaussian white noise
ε0. For j ≥ 1, let also

cj , dj ∈ l2(Z) (3.1)

and
Û j

d(w) = ĉj(w)û(w), V̂ j
d (w) = d̂j(w)v̂(w), (3.2)

where u, v are OWD filters. Similarly, for j ≥ 0, set

Û j
r (w) = ĉj+1(w)−1û(w), V̂ j

r (w) = d̂j+1(w)−1v̂(w). (3.3)

For j ≥ 1, define
Xj =↓2 (U j

d ∗Xj−1), ξj =↓2 (V j
d ∗Xj−1). (3.4)
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By analogy to the OWD relation (2.11), one expects that, for j ≥ 1,

Xj−1 = U j−1
r ∗ ↑2 Xj + V j−1

r ∗ ↑2 ξj , (3.5)

when the following “reconstruction” identity holds

ĉj(w + π)
ĉj(w)

=
d̂j(w + π)

d̂j(w)
. (3.6)

Definition 3.1 The decomposition of a stationary time series X = X0 into the collection of series
Xj , ξj , j ≥ 1, in (3.4) will be called Adaptive Wavelet Decomposition (AWD, in short) of a station-
ary time series X. We will refer to Xj as approximation coefficients (approximations, in short),
to ξj as detail coefficients (details, in short) and to U j

d , V j
d , U j

r , V j
r as AWD (decomposition and

reconstruction) filters.

The next theorem provides simple technical conditions for AWD of a stationary time series to be
well-defined through the FWT relation (3.4) at decomposition, and for the resulting AWD coefficients
to satisfy the FWT relation (3.5) at reconstruction.

Theorem 3.1 The following assertions hold:
(i) (Decomposition step) If Û j

d , V̂ j
d ∈ L2(0, 2π) and the corresponding filters

U j
d , V j

d ∈ l1(Z), j ≥ 1, (3.7)

then the sequences Xj , ξj are well-defined series through (3.4). Moreover, the collection {XJ , ξj , 1 ≤
j ≤ J} consists of Gaussian stationary series, and is jointly Gaussian.

(ii) (Reconstruction step) If the “reconstruction” identity (3.6) holds and, in addition, Û j
r , V̂ j

r ∈
L2(0, 2π) and the corresponding filters

U j
r , V j

r ∈ l1(Z), j ≥ 0, (3.8)

then the relation (3.5) holds.

Remark 3.1 Another interpretation of Theorem 3.1 is to say that (U j
d , V j

d , U j−1
r , V j−1

r ) forms a
perfect reconstruction filter bank (see, for example, Mallat (1991), p. 259). Indeed, by Theorem 7.8
in Mallat (1998), this is so if and only if

Û j
d(w)Û j−1

r (w + π) + V̂ j
d (w)V̂ j−1

r (w + π) = 0,

Û j
d(w)Û j−1

r (w) + V̂ j
d (w)V̂ j−1

r (w) = 2.

The left-hand side of the first relation is

ĉj(w)
ĉj(w + π)

û(w)û(w + π) +
d̂j(w)

d̂j(w + π)
v̂(w)v̂(w + π)

=
ĉj(w)

ĉj(w + π)

(
û(w)û(w + π) + v̂(w)v̂(w + π)

)
= 0,

using the “reconstruction” identity (3.6) and the perfect reconstruction property of OWD filters.
The second relation can be proved similarly. Note also that Theorem 3.1 is not a consequence of
perfect reconstruction because the filtering scheme involves (random) time series.
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The term “detail coefficients” in Definition 3.1, in particular, is motivated by the fact that the
filter v in (3.2) and (3.3) is a high pass filter. An important related property of any AWD is that
AWD detail coefficients ξj are invariant to polynomial trends up to the order of the number of zero
moments of the underlying orthogonal MRA. An analogous fact is well-known for OWDs. (In discrete
time, this follows immediately from Theorem 7.4, (iv), in Mallat (1998).) We show that it holds here
as well (see Section 8 for a proof).

Theorem 3.2 Suppose that the underlying orthogonal MRA has N zero moments with factorization
(2.9). Let pn = p(n), n ∈ Z, where a polynomial p is of degree D < N . Consider AWD with
decomposition filters U j

d , V j
d such that |U j

d,n|, |V j
d,n| ≤ Cj |n|−D−2, where Cj is a constant. Then, for

any j ≥ 1,
ξj(p) = 0, (3.9)

where ξj(p) are details in AWD when applied to the polynomial p.

By its definition, AWDs are OWDs when

ĉj(w) ≡ 1, d̂j(w) ≡ 1. (3.10)

In the context of this work, however, we will be interested in those AWDs whose detail coefficients
are more decorrelated than those obtained through OWDs. In this regard, it is useful to have a result
characterizing covariance structures of Xj and ξj , and this is established next. The corresponding
result for OWDs is well-known (see, for example, Percival and Walden (2000), p. 348). We shall use
the following notation, which stands in analogy to the corresponding notation for OWDs. For j ≥ 1,
let

Ĉj(w) =
j∏

k=1

ĉk(2k−1w), D̂j(w) = d̂j(2j−1w)
j−1∏

k=1

ĉk(2k−1w) (3.11)

and

Û j(w) =
j∏

k=1

û(2k−1w), V̂ j(w) = v̂(2j−1w)
j−1∏

k=1

û(2k−1w), (3.12)

where the last products in (3.11) and (3.12) are interpreted as 1 for j = 1. (The difference in notation
(3.12) and (3.2) is the subindex d.) Let also

F̂ j(w) = Ĉj(w)Û j(w), Ĝj(w) = D̂j(w)V̂ j(w). (3.13)

Theorem 3.3 Under the assumptions in part (i) of Theorem 3.1, the collection {XJ , ξj , 1 ≤ j ≤ J}
has the following covariance structure: for 1 ≤ j, j′ ≤ J , n, n′ ∈ Z, k ∈ Z,

EXJ
n XJ

n+k =
∫ 2π

0
ei2Jkw|â0(w)|2|F̂ J(w)|2 dw

2π
, (3.14)

EXJ
n ξj′

n′ =
∫ 2π

0
ei(2Jn−2j′n′)w|â0(w)|2F̂ J(w)Ĝj′(w)

dw

2π
, (3.15)

Eξj
nξj′

n′ =
∫ 2π

0
ei(2jn−2j′n′)w|â0(w)|2Ĝj(w)Ĝj′(w)

dw

2π
. (3.16)

In particular,

Eξj
nξj

n+k =
∫ 2π

0
ei2jkw|â0(w)|2|Ĝj(w)|2 dw

2π
. (3.17)
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Observe that, since
∫ 2π

0
ei2jkw|â0(w)|2|Ĝj(w)|2 dw

2π
=

∫ 2π

0
eikwfξj (w)dw (3.18)

with

fξj (w) =
1

2π2j

2j−1∑

n=0

∣∣∣∣â0

(
w + 2πn

2j

)∣∣∣∣
2 ∣∣∣∣Ĝj

(
w + 2πn

2j

)∣∣∣∣
2

, (3.19)

relation (3.17) shows that ξj is a (Gaussian) stationary series with the spectral density fξj in (3.19).
Similarly, XJ is also a (Gaussian) stationary series with the spectral density

fXJ (w) =
1

2π2J

2J−1∑

n=0

∣∣∣∣â0

(
w + 2πn

2j

)∣∣∣∣
2 ∣∣∣∣F̂ J

(
w + 2πn

2J

)∣∣∣∣
2

, (3.20)

AWD is, in general, not an orthogonal transformation. Under suitable assumptions, however,
there is a simple formula for energy transformation under AWD (that is, a formula for the sum of
the second moments of AWD detail coefficients across scales – see (3.23) below). These assumptions
are satisfied, in particular, by Exact AWDs introduced below, and play a key role in estimation
(Section 7).

Theorem 3.4 Under the assumptions in (i) of Theorem 3.1, suppose that the following “energy
transformation” condition holds: for j ≥ 1 and some function b̂(w),

|D̂j(w)|2 = |d̂j(2j−1w)|2
j−1∏

k=1

|ĉk(2k−1w)|2 =:
1

|̂b(w)|2
. (3.21)

Then,

∞∑

j=1

2−jE(ξj
n)2 =

1
2π

∫ 2π

0

|â0(w)|2
|̂b(w)|2





∞∑

j=1

2−j |V̂ j(w)|2


 dw (3.22)

=
1
2π

∫ 2π

0

|â0(w)|2
|̂b(w)|2

dw (3.23)

and, for any J ≥ 1,

J∑

j=1

2−jE(ξj
n)2 =

1
2π

∫ 2π

0

|â0(w)|2
|̂b(w)|2





J∑

j=1

2−j |V̂ j(w)|2


 dw. (3.24)

Remark 3.2 The factor 2−j in (3.22) and (3.24) is for proper normalization. It would not be needed
if = 2 is replaced by = 1 in (2.5), which is another common convention in the wavelet literature.

3.2 Exact AWDs

A particular case of AWDs is when detail coefficients ξj in (3.4) are exactly decorrelated (within
and across scales). We shall refer to this case as that of Exact Adaptive Wavelet Decompositions
(EAWDs, in short). Decorrelation can be achieved for a wide range of filters cj , dj in (3.1). In this
work, we consider the following particular situation, which turns out to be quite interesting for a
range of time series models.

9



Consider sequences aj ∈ l2(Z), j ≥ 1, and set

ĉj(w) =
âj(2w)
âj−1(w)

, d̂j(w) =
1

âj−1(w)
. (3.25)

Note that, because of the argument 2w of âj and the periodicity with period 2π of âj , the filters cj , dj

in (3.25) satisfy the “reconstruction” identity (3.6). AWDs with the choice (3.25) have properties
stated in the following result.

Theorem 3.5 Suppose the filters U j
d , V j

d , U j
r , V j

r defined through (3.2), (3.3) and (3.25) satisfy the
conditions of Theorem 3.1. Consider approximation and detail coefficients Xj and ξj defined by
(3.4). Then, for J ≥ 1,

XJ = aJ ∗ εJ (3.26)

with a Gaussian white noise εJ , and ξj, j ≥ 1, are independent, Gaussian white noise sequences.
Moreover, εJ (and hence XJ) and ξj, 1 ≤ j ≤ J , are independent.

Though (3.25) is a particular case of EAWDs, it is still quite flexible in the choice of moving
average filters aj , and hence the corresponding time series Xj . In fact, EAWDs can be defined for
many different choices of aj ’s according to the properties one wishes to obtain. The latter can be
suggested by an application at hand or other considerations, for example,

(a) XJ and ξj , 1 ≤ j ≤ J , consisting of uncorrelated (independent) variables,

(b) U j
d , V j

d , U j
r , V j

r having a fast decay, or

(c) Xj being a natural approximation to X0 at scale 2j .

The property (a) is important in Signal Processing, as it is typically associated with optimality in
coding. For this work, we were motivated by (b). In regard to (c), one natural approximation of a
series X0 at scale 2j is

Xj = {X0
2jk}k∈Z. (3.27)

In particular, taking â0(w) = â(w) as in the spectral representation (2.3) of X0, the spectral repre-
sentation of Xj is defined through the function

âj(w) =
1
2

(
âj−1

(w

2

)
+ âj−1

(w

2
+ π

))
. (3.28)

See Remark 5.1 in Section 5 below for further discussion on (c).

Remark 3.3 Note that ĉj and d̂j in (3.25) satisfy the “energy transformation” condition (3.21) with
b̂(w) = â0(w). This fact plays a central role in estimation based on EAWDs (see Section 7).

3.3 Approximate AWDs

Approximate Adaptive Wavelet Decompositions (AAWDs, in short) will refer to, somewhat loosely,
AWDs which are not EAWDs, whose filters U j

d , V j
d , U j

r , V j
r are of finite practical length and whose

detail coefficients are expected to be more decorrelated than those obtained from OWDs. We shall
focus on two types of AAWDs:

• EAWD-based AAWDs, and

• AR-based AAWDs.

10



EAWD-based AAWDs are defined by truncating EAWD filters when the latter are infinite and have a
fast decay. We postpone a further discussion of EAWD-based AAWDs to examples found in Sections
4 and 5.

AR-based AAWDs are motivated by AR modeling of OWD detail coefficients found in, for ex-
ample, Craigmile et al. (2005). The basic idea here is the following. As mentioned in Section 1, with
many time series models of interest, OWD detail coefficients are correlated mostly at the first few
lags and within scales. With AR-based AAWDs, the filters cj , dj in (3.1) are chosen such that the
corresponding detail coefficients are essentially the residuals in AR(1) models of OWD coefficients.
Hence, these new AAWD detail coefficients are expected to be more decorrelated than the original
OWD detail coefficients. This approach is detailed in the next example.

Example 3.1 (AR-based AAWDs) Take

ĉj(w) ≡ 1, d̂j(w) = b̂j(2w) = σj(1− bje
−i2w) (3.29)

in (3.2) and (3.3) of AWD. AR refers here to the autoregressive form of the filters bj in (3.29).
Note that, in this case, Xj are the approximation coefficients obtained through OWD of X0, and
ξj = bj ∗W j or

ξj
n = σj(W j

n − bjW
j
n−1), (3.30)

where W j are the detail coefficients obtained through OWD of X0.
Since in AAWD we want the detail coefficients ξj to be more decorrelated than the coefficients

W j , the parameters bj , σj in (3.29) have to be chosen based on the correlation structure of the
underlying time series X0. One way this can be done is the following (adapting the approach used
in Craigmile et al. (2005)). The relation (3.30) can be rewritten as

W j
n = bjW

j
n−1 +

1
σj

ξj
n. (3.31)

The covariance structure of W j
n is given by

rW j (k) = EW j
nW j

n+k =
∫ 2π

0
eikwfW j (w)dw, (3.32)

where, from (3.19),

fW j (w) =
1

2π2j

2j−1∑

n=0

∣∣∣∣â0

(
w + 2πn

2j

)∣∣∣∣
2 ∣∣∣∣V̂ j

(
w + 2πn

2j

)∣∣∣∣
2

(3.33)

is the spectral density of W j . Since we expect ξj to be approximately white noise, the coefficients
bj , σj in (3.31) could be chosen based on the correlation structure of W j , namely,

rW j (0) =
1

σ2
j (1− b2

j )
, rW j (1) =

bj

σ2
j (1− b2

j )
(3.34)

or
bj =

rW j (1)
rW j (0)

,
1
σ2

j

= rW j (0)(1− b2
j ) (3.35)

(cf. (11) in Craigmile et al. (2005)).

Remark 3.4 Unlike EAWDs, which involve the exact correlation structure of the series X0, AR-
based AAWDs in Example 3.1 could be considered more model-free. In particular, they can be
implemented in practice by replacing rW j (0), rW j (1) in (3.35) by their sample counterparts or, equiv-
alently, by fitting AR(1) model to detail coefficients obtained through OWD. Let us also add that
the approach of Example 3.1 could be extended to AR(p) models with higher order p by following
the corresponding AR modeling of OWD coefficients as in Craigmile (2000).
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4 Examples of AWDs: FARIMA(0, δ, 0) series

We construct here particular AWDs for (Gaussian) FARIMA(0,δ,0) time series with δ ∈ (−1/2, 1/2)
(δ 6= 0). These are series X = a ∗ ε with a (Gaussian) white noise ε and

â(w) = σ(1− e−iw)−δ, (4.1)

where σ > 0 (see, for example, Brockwell and Davis (1991), p. 520, or Beran (1994)). The case
δ ∈ (0, 1/2) corresponds to the so-called long memory, and is generally considered more difficult to
deal with. Exact AWDs are studied in Section 4.1 and a finer analysis of the resulting fractional
filters can be found in Section 4.2. Approximate AWDs are considered in Section 4.3.

4.1 Exact AWDs

We introduce here exact AWDs of the form (3.25) where we would like the associated filters
U j

d , V j
d , U j

r , V j
r to decay to zero fast. Consider EAWDs with the choice of

âj(w) = â(w), j ≥ 1, (4.2)

in (3.25), where â(w) is given by (4.1) and we assume for simplicity that σ = 1. Observe that the
filters entering into (3.2) and (3.3) are

ĉ(w) ≡ ĉj(w) =
â(2w)
â(w)

=
(1− e−i2w)−δ

(1− e−iw)−δ
= (1 + e−iw)−δ, (4.3)

d̂(w) ≡ d̂j(w) =
1

â(w)
= (1− e−iw)δ (4.4)

and
ĉ(w)−1 = (1 + e−iw)δ, d̂(w)−1 = (1− e−iw)−δ. (4.5)

They have the general forms (with s = ±δ)

(1 + e−iw)s =
∞∑

k=0

f
(s)
k e−iwk, (1− e−iw)s =

∞∑

k=0

g
(s)
k e−iwk (4.6)

and, in fact, decay extremely slowly when s ∈ (−1/2, 1/2) \ {0}: by using Stirling’s formula, one can
show that, as k →∞,

f
(s)
k ∼ (−1)k k−s−1

Γ(−s)
, g

(s)
k ∼ k−s−1

Γ(−s)
. (4.7)

(For example, when s ∈ (−1/2, 0), these filters are not even absolutely summable.)
It is therefore quite surprising that, in fact, the resulting filters U j

d ≡ Ud, V
j
d ≡ Vd, U

j
r ≡ Ur, V

j
r ≡

Vr may decay to 0 very rapidly. As mentioned in Section 1, this results from the number of zero
moments of the underlying orthogonal MRA. Letting N denote the number of zero moments and
using (2.9), observe that

Ûd(w) = (1 + e−iw)−δ+N û0,N (w), V̂d(w) = (1− e−iw)δ+N v̂0,N (w), (4.8)

Ûr(w) = (1 + e−iw)δ+N û0,N (w), V̂r(w) = (1− e−iw)−δ+N v̂0,N (w). (4.9)

For example, by (4.7),

(1 + e−iw)δ+N =
∞∑

k=0

f
(δ+N)
k e−iwk with f

(δ+N)
k ∼ (−1)k k−δ−N−1

Γ(−δ −N)
, (4.10)
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as k →∞. Comparing (4.10) and (4.7) with s = δ, we see that these filters now decay rapidly when
N is large.

The latter observation by itself does not show that the resulting filters Ud, Vd, Ur, Vr in (4.8) and
(4.9) decay faster as N increases because u0,N and v0,N also grow in size (not length). We address
this and other issues in more detail in the next section.

4.2 Finer analysis of fractional filters

We examine here in greater detail the fractional filters Ud, Vd, Ur, Vr in (4.8) and (4.9). In Table 1,
we provide lengths of filters Ur, Vr truncated at a priori specified cutoff levels ε and the underlying
Daubechies OWD filters for various choices of zero moments N . We choose δ = 0.4. More precisely,
the length of the truncated filter Ur is computed as follows. Observe that

|Ur,n| ≤
N−1∑

k=0

|u0,N,k||f (δ+N)
n−k |, (4.11)

where Ur,n denotes the nth element of Ur and similarly for u0,N,n representing u0,N . (We also used the
fact that u0,N is of length N .) The right-hand side of (4.11) decreases monotonically for n ≥ N − 1
and the length of a truncated filter Ur is chosen as the smallest n = n0 + 1 (n0 ≥ N − 1) for which
the right-hand side of (4.11) is smaller than ε.

Remark 4.1 In fact, determining the filter length based on the right-hand side of (4.11) is essentially
equivalent to finding the smallest n0+1 (n0 ≥ N−1) such that |Ur,n0 | ≤ ε. This is so because the sign
of f

(δ+N)
n eventually oscillates, and the sign of u0,N,n is also oscillating (see Table 6.2 in Daubechies

(1992), p. 196). The same could be said about the filter Vr: the sign of g
(−δ+N)
n is eventually the

same, and the sign of v0,N,n is always the same.

Remark 4.2 The faster decay in (4.10) has also the following simple explanation that is useful more
generally. According to (4.6)–(4.7), the elements f

(s)
k of (1 + e−iw)s decay as

f
(s)
k ∼ (−1)k k−s−1

Γ(−s)
.

Application of the filter (1 + e−iw)N to (1 + e−iw)s corresponds to taking sums in blocks of size N .
Since f

(s)
k oscillates and decays, the sums will become smaller. A similar explanation with difference

instead of sums applies to the elements g
(s)
k of (1− e−iw)s.

Remark 4.3 Because of the explanation provided in Remark 4.2, we expect that analogous frac-
tional filters have fast decay for long memory time series other than FARIMA series given by (4.1),
for example, for the series characterized by â(w) = w−δ. A note of caution here is that our MLE
procedure in Section 7 below assumes, in particular, that the filter a = {an}n∈Z is causal (that is,
an = 0 for n ≤ 0). This is not the case for the filter â(w) = w−δ mentioned above.

Table 1 shows, in particular, that increasing N substantially reduces the lengths of truncated
fractional filters at small levels of cutoff ε. This is relevant in simulations discussed in Section 6: from
a practical perspective, say even for cutoff ε = 10−13, the related reconstruction filters Ur, Vr can be
chosen of a fairly short length. Note also that Table 1 provides the lengths of the truncated filters
Ud and Vd which are exactly those of Vr and Ur, respectively. The latter fact is easy to understand.
For example, by (7.58) in Mallat (1998), p. 236, one has (2.6) and hence

v̂0,N (w) = (−1)Nei(N−1)wû0,N (w + π). (4.12)
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Plugging this, for example, into Vd in (4.8) yields

V̂d(w) = (−1)Nei(N−1)w(1− e−iw)δ+N û0,N (w + π)

= (−1)Nei(N−1)w(1 + e−i(w+π))δ+N û0,N (w + π) = (−1)Nei(N−1)wÛr(w + π). (4.13)

Entries in Table 1 for larger cutoff levels ε suggest that only a small number of elements of filters
Ud, Vd, Ur, Vr take on larger values. This is indeed what happens. Figure 1, for example, depicts the
first 30 elements of filters Ur for δ = 0.4 and N = 2, 4, 6 and 10. Table 2 also refines the information
given in Table 1, for larger ε, by considering several values of δ.

It can be seen from Table 2 that, for N ≥ 4, ε = 10−3 and N ≥ 6, ε = 10−4, one may essentially
take fractional filters of length

2N + 3, (4.14)

with the second term 3 becoming 2 or 1 as N increases. Moreover, this choice works across the
whole range of δ. This observation also suggests one form of filters in AAWDs considered in the next
section.

The Daubechies OWD filters u and v used in Tables 1, 2 and Figure 1 have the so-called extremal
phase and can be thought of as being the most asymmetric ones. Other analogous filters are possible
having different phase properties, for example, the least asymmetric Daubechies filters (Daubechies
(1992), Percival and Walden (2000)). It is interesting to discuss here briefly how these various choices
affect the fractional filters (and, in particular, their phase). In Figures 2 and 3, we depict fractional
filters obtained by considering all such possible OWD filters u and v, when δ = 0.4 and N = 4. (The
filters Vr are plotted as starting with index n = 0.) As can be seen from these figures, various choices
of u and v lead to visually different fractional filters. In particular, the choice appearing in subplots
3 seems to yield least asymmetric fractional filters for N = 4. A higher degree of symmetry might
be of interest in some applications (such as denoising) and in the visualization of transformation
coefficients, though not in the applications appearing in Sections 6 and 7.

4.3 Approximate AWDs

The discussion in the beginning of Section 3.3 and around (4.14) suggests the construction of AAWDs
based on truncated fractional filters. First, motivated by (4.14), one can set

Ua1
d , V a1

d , Ua1
r , V a1

r (4.15)

as the filters Ud, Vd, Ur, Vr truncated to the length 2N + 3 (the superscript a1 stands for the first
approximation). Note, however, that V a1

d in particular would not exactly eliminate polynomial
trends. This can be corrected by considering the filters

Ua2
d , V a2

d , Ua2
r , V a2

r (4.16)

defined as follows. For example, the filter V a2
r is defined through

V̂ a2
r (w) = (1− e−iw)−δ

t v̂(w), (4.17)

where

(1− e−iw)−δ
t =

K∑

k=0

g
(−δ)
k e−iwk (4.18)

is the truncation of (1 − e−iw)−δ to K terms. Choosing K = 2N + 3 ensures that the first 2N + 3
elements of V a2

r are the same as those of Vr. The length of all filters (4.16) becomes

2N + (2N + 3)− 1 = 4N + 2. (4.19)
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For example, for N = 4 and 5, this equals 18 and 22, compared to 11 and 13 according to (4.14).
Another possibility of AAWDs is detailed in Example 3.1. Implementing this involves computing

rW j (0) and rW j (1) in (3.32) and (3.33). Two methods for calculations are suggested in Craigmile
et al. (2005): the exact method based on numerical integration of (3.32), and the ideal bandpass
approximation method. The latter consists of using the ideal bandpass approximations of Daubechies
filters u and v,

|û(w)| ≈ |ûI(w)| :=
{ √

2, |w| ∈ [0, π/2),
0, |w| ∈ [π/2, π),

|v̂(w)| ≈ |v̂I(w)| :=
{

0, |w| ∈ [0, π/2),√
2, |w| ∈ [π/2, π)

(4.20)

(which can be replaced by convergence as the number of zero moments N →∞), and hence

|V̂ j(w)| ≈
{

0, otherwise,
2j/2, |w| ∈ [π/2j , π/2j−1),

(4.21)

for V j appearing in (3.12). Substituting this into (3.33), the covariance (3.32) is approximated as

rW j (k) ≈ 2j

π

∫ π/2j−1

π/2j

cos(2jwk)|â0(w)|2dw. (4.22)

Several finer numerical schemes for (4.22) are discussed in Craigmile (2000), pp. 47-48. Using the
approximation (4.22), however, seems the only practical way of dealing with rW j when j is larger.

To give an idea of the resulting dependence structure of detail coefficients, we briefly report
here on their within-scales spectral densities. Figure 4 depicts deviations from (2π)−1 (that is, the
spectral density of white noise with variance 1) of spectral densities fξj of detail coefficients at scales
j = 2, 3, 4 and 5. The detail coefficients are computed from AAWD based on filters (4.15) or AAWD
based on AR approximation. The chosen model is FARIMA(0, δ, 0) with δ = 0.4 and the number
of zero moments used is N = 4. As seen from the figure (in particular, its vertical scale with the
small maximum value), both decompositions yield almost decorrelated coefficients, with that based
on (4.15) achieving a more precise decorrelation. The fact that AAWD performs here well for AR
approximation can also be seen by examining spectral densities of OWD detail coefficients and their
approximations. Figure 5 shows such densities in theory and their approximations based on white
noise or AR models. Consistently with Figure 4, the AR-based approximations provide a good fit to
theoretical densities.

5 Examples of AWDs: AR and MA series

We study here AWDs of (Gaussian) AR or MA series. The focus will be on AR series throughout.
(As will be seen below, the discussion on MA series can be essentially reduced to that for AR series
with the roles of decomposition and reconstruction filters reversed.) These are series X = a ∗ ε with
a (Gaussian) white noise ε and

â(w) = σ(1− φ1e
−iw − . . .− φpe

−ipw)−1 = σ(1− γ1e
−iw)−1 . . . (1− γpe

−iw)−1, (5.1)

where σ > 0, the roots γ−1
i , i = 1, . . . , p, are outside the unit circle, and p denotes the order of series,

that is, AR(p) series. The simplest case is that of AR(1) series with

â(w) = σ(1− γ1e
−iw)−1, (5.2)

where −1 < γ1 < 1 (γ1 6= 0). The case of γ1 = ±1, not considered here, corresponds to unit roots,
and the case of γ1 close to ±1 (−1 < γ1 < 1) is referred to as near unit roots. Exact and approximate
AWDs of AR series are considered in Sections 5.1 and 5.2.
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5.1 Exact AWDs

5.1.1 AR series

We consider here exact AWDs of the form (3.25). If the decomposition of X is of interest (as, for
example, in maximum likelihood estimation: see Section 7), we can consider EAWD of the form
(3.25) with

âj(w) ≡ 1, j ≥ 1. (5.3)

Then,

Û1
d (w) = â(w)

−1
û(w) = σ−1(1− φ1e

iw − . . .− φpe
ipw)û(w), V̂ 1

d (w) = â(w)
−1

v̂(w), (5.4)

where â(w) is given by (5.1), and

Û j
d(w) = û(w), V̂ j

d (w) = v̂(w), j ≥ 2. (5.5)

Hence, the corresponding filters U j
d , V j

d are of short and finite length (supposing that so are u and
v). Note also that, in this case, all approximations Xj and details ξj are (Gaussian) white noise
sequences.

With the choice (5.3),

Û0
r (w) = â(w)û(w), V̂ 0

r (w) = â(w)v̂(w) (5.6)

and
Û j

r (w) = û(w), V̂ j
r (w) = v̂(w), j ≥ 1. (5.7)

When γi, i = 1, . . . , p, in (5.1) are close to 0, the elements of (1− γie
−iw)−1 =

∑∞
k=0 γk

i e−iwk decay
to zero rapidly and hence the filters U0

r , V 0
r can be taken of short length in practice. When γi is close

to ±1, however, the decay of γk
i is much slower, resulting in longer filters U0

r , V 0
r . Zero moments are

not helpful for U0
r when 0 < γi < 1, and for V 0

r when −1 < γi < 0. For example, this occurs for V 0
r

because, in simple terms, the elements of (1 − γ1e
−iw)−1 =

∑∞
k=0(−1)k|γ1|ke−iwk oscillate and the

difference operator (1 − e−iw)N does not make them decrease to 0 faster (see Remark 4.2 above).
Hence, in these cases, if the reconstruction is of interest, the choice (5.6) may not be the best one in
practice.

When 0 < γi < 1, the decay of U0
r can be improved by considering a different EAWD. Consider

EAWD with the filter
âj(w) = σ(1− γ2j

1 e−iw)−1 . . . (1− γ2j

p e−iw)−1, (5.8)

so that

Û j
r (w) = (1 + γ2j

1 e−iw) . . . (1 + γ2j

p e−iw)û(w),

V̂ j
r (w) = σ(1− γ2j

1 e−iw)−1 . . . (1− γ2j

p e−iw)−1v̂(w), j ≥ 0. (5.9)

In this case, U j
r are of finite length. Moreover, the filters V j

r can also be taken of finite and short
length in practice, irrespective of the value of 0 < γi < 1. This is a consequence of two complementary
facts: first, when γ2j

i is close to 0, the filter (1−γ2j

i e−iw)−1 already decays rapidly and, second, when
γ2j

i is close to 1, the larger number of zero moments make the filter V j
r decay faster.

We illustrate the above for p = 1 (AR(1) series) in the following way. Focus on the filter

V̂ 0
r (w) =

v̂(w)
1− γ1e−iw

, (5.10)

where we took σ = 1 (note that V j
r is V 0

r by replacing γ1 by γ2j

1 ). Let v be the Daubechies OWD
wavelet filter with N zero moments, so that its length is 2N . The filter V 0

r is obtained by convolving
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the sequence (1, γ1, γ
2
1 , . . .) with the filter v. Note that the (2N + j)th nonzero element of the

convolution is
γj

1c := γj
1(1, γ1, . . . , γ

2N−1
1 )v′, j ≥ 0, (5.11)

and decays as a geometric sequence. In Table 3, we provide the absolute values of the (2N)th nonzero
element of the filter V 0

r for various choices of the parameter γ1 and the number of zero moments
N . In parentheses, we provide the value of γ2N

1 for comparison. Note from the table that the filter
V 0

r is short from a practical perspective not only for smaller γ1 but also when γ1 is closer to 1. In
particular, for N ≥ 6, the length

2N + 3 (5.12)

of the truncated filters ensures that all remaining elements are smaller than 10−3 (this uses the
relation (5.11)). For illustration sake, in Figure 6, we provide plots of V 0

r for several values of γ1.
Note also that, with the choice (5.8) for EAWD, the approximations Xj become AR(p) time

series with the roots γ−2j

i of the corresponding AR polynomial. The decomposition filters associated
with (5.8) are

Û j
d(w) =

û(w)
(1 + γ2j

1 eiw) . . . (1 + γ2j

p eiw)
, V̂ j

d (w) = σ−1(1− γ2j

1 eiw) . . . (1− γ2j

p eiw)v̂(w). (5.13)

When γi are close to 1, the filters U j
d can also be seen to decay faster as the number of zero moments

increases.
When −1 < γ1 < 0 and especially when γ1 is close to −1, the EAWD with (5.8) is not helpful

because the decay of V 0
r is not affected by the increasing number of zero moments (see Remark 4.2).

In this case, the EAWD with (5.3) is probably the best that one can do.

5.1.2 Discussion on MA series

We studied above the case of AR time series. Suppose now that X is an MA time series and focus
on MA(1) time series, that is, X = a ∗ ε with

â(w) = 1 + θ1e
−iw, (5.14)

where −1 < θ1 < 1 (θ1 6= 0). Since â(w) in (5.14) is reciprocal to the filter in (5.2), our discussion
in Section 5.1.1 also covers the case of MA(1) time series. For example, reconstruction filters are
natural to define by taking EAWD with the choice (5.3), that is,

âj(w) ≡ 1, j ≥ 1.

The resulting filters are

Û0
r (w) = (1 + θ1e

−iw)û(w), V̂ 0
r (w) = (1 + θ1e

−iw)v̂(w)

and Û j
r (w) = û(w), V̂ j

r (w) = v̂(w), j ≥ 1. In analogy to (5.8), the decomposition filters can naturally
be defined for

âj(w) = 1− (−θ1)2
j
e−iw, j ≥ 1. (5.15)

Remark 5.1 Part (c) at the end of Section 3.2 suggests natural approximation (3.27), characterized
by (3.28), as one possible choice for EAWD. In fact, such natural approximations underly some of
the EAWDs for MA and AR series introduced above. Observe that, if X0 is an MA(1) time series
with â(w) as in (5.14), then the functions (3.28) characterizing the natural approximations Xj in
(3.27) become

âj(w) ≡ 1. (5.16)
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If X0 is an AR(1) time series with â(w) in (5.2) (with σ = 1), then the functions (3.28) are

âj(w) = (1− γ2j

1 e−iw)−1. (5.17)

Observe that (5.16) and (5.17) are exactly what was proposed above for EAWDs at reconstruction
for MA(1) and AR(1) time series.

5.2 Approximate AWDs

As in Section 4.3 for fractional filters, we examine two possibilities of AAWDs for AR series. We
focus on AR(1) time series, and consider approximation to EAWD given by (5.8). (EAWD based
on (5.3) has finite associated decomposition filters and needs no approximation.) The corresponding
decomposition filters are found in (5.13), and we shall approximate them to the length 2N + 3 in
(5.12). Alternatively, AAWD can be defined as in Example 3.1.

Figure 7 shows deviations from (2π)−1 of spectral densities fξj of detail coefficients at scales
j = 2, 3, 4 and 5, for the two AAWDs discussed above. The chosen model is AR(1) series with
γ1 = 0.5 and the number of zero moments is N = 4. The plots in the figure indicate that both
methods do well in decorrelating detail coefficients. In Figure 8, we also provide spectral densities
of OWD detail coefficients and their approximations based on white noise and AR models.

6 Applications of AWDs: simulation

We apply here AWDs to the simulation of Gaussian stationary time series. In Section 6.1, gen-
eral AWD-based simulation methods are described. The performance of the simulation methods is
investigated in Section 6.2.

6.1 Simulation

We first describe our methods and then examine them from various angles. Suppose that a Gaussian
stationary time series X0 of length T = 2J is desired. It can be simulated through AWD by the
steps described next. We distinguish between EAWD-based and AAWD-based simulation methods
for clarity, though the two methods could also be viewed under one framework.

EAWD-based simulation:

1. For j = 0, 1, . . . , J − 1, determine the largest length LJ of the reconstruction filters U j
r , V j

r

in EAWD truncated at a chosen cutoff level ε > 0. Let Ũ j
r , Ṽ j

r , j = 0, 1, . . . , J − 1, be the
reconstruction filters U j

r , V j
r truncated so that each one has length LJ .

2. Use some simulation method to generate an initial time series vector XJ of length LJ +1. (The
choice of this series is further discussed below.)

3. Apply the reconstruction scheme (3.5) recursively J times with the truncated reconstruction
filters Ũ j

r , Ṽ j
r and taking into account the border effect to obtain the time series X0 of length

2J .

AAWD-based simulation:

1. For j = 0, 1, . . . , J−1, determine the largest length LJ of the finite reconstruction filters U j
r , V j

r

in AAWD.

2. Perform Step 2 in EAWD-based simulation above.
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3. Perform Step 3 with filters U j
r , V j

r in EAWD-based simulation above.

Several observations regarding these methods and steps are in order. Consider first EAWD-based
simulation method. By a cutoff level ε > 0 in Step 1, we mean an extremely small value, such as
10−15 or smaller, which from a practical perspective effectively means that an exact reconstruction is
being performed. For example, for FARIMA(0, δ, 0) series, we know from Section 4.1 that fractional
filters truncated at even such small cutoff levels are fairly short if the number of zero moments is
large. The second step refers to the fact that application of the reconstruction scheme (3.5) requires
some initial approximation Xj . We take j = J because XJ can be taken of the smallest possible
length LJ + 1 in order to apply the simulation scheme (3.5). According to EAWD, the exact XJ is
given by

XJ = aJ ∗ εJ , (6.1)

where aJ and the series XJ depend on a specific EAWD. Ignoring truncation of the EAWD recon-
struction filters (which is insignificant from a practical perspective), the choice (6.1) leads to an exact
reconstruction of the series X0. The series XJ in (6.1) can be simulated by the popular Circulant
Matrix Embedding (CME) method (Dietrich and Newsam (1997)) or, since LJ is often small, by
the Durbin-Levinson algorithm (Brockwell and Davis (1991)). Another simpler possibility is just to
take, for example,

XJ = 0, (6.2)

especially for large J . The idea here is that approximations XJ can be thought of as representing
frequencies [0, 2π/2J−1) in the spectrum of X0. Hence, as J increases, the choice of XJ should be
less and less relevant. The choices (6.1) and (6.2) will be compared through simulations in Section
6.2 below. Regarding the third step, observe that by applying the scheme (3.5) with ŨJ−1

r , Ṽ J−1
r

to XJ of length LJ + 1, we obtain 2(LJ + 1) − LJ = LJ + 2 number of observations of the time
series XJ−1 which are unaffected by the border. Here, 2(LJ + 1) is the number of observations
after the operation ↑2 and (−LJ) takes into account the border effect. By repeating this argument,
the number of observations of the resulting time series X0 which are unaffected by the border is
LJ + 2J > 2J .

The AAWD-based simulation is performed in a similar way. Consider, for example,
FARIMA(0, δ, 0) series for which several AAWDs are discussed in Section 4.3. In EAWD-based
AAWD, the fractional filters U j

r , V j
r in Step 1 are taken of length 2N +3. The initial series XJ could

be taken as in (6.1) or (6.2). For AR-based AAWD, the exact choice of XJ consists of approximation
coefficients obtained from OWD at scale 2J . One possibility is also to use AR approximations for
the series XJ . Another possibility is to set the series XJ equal to 0 again.

It is important to discuss here statistical properties of the series X0 simulated according to the
above methods. Because of the linear structure and Gaussian inputs, the series X0 is always Gaussian.
For the EAWD-based simulation with the initial series in (6.1), from a practical perspective the series
X0 is stationary and has the desired correlation structure. Strictly speaking, however, the series X0

based on other suggested methods (that is, the EAWD-based method with zero initialization (6.2)
and all AAWD-based methods) is not exactly stationary. This could easily be seen with XJ = 0 in
(6.2). With this choice, note that

XJ−1 = V J−1
r ∗ ↑2 ξJ ,

which cannot be expected to be stationary because ↑2 ξJ is not stationary. This is also the issue
with previous wavelet-based simulations such as in, for example, Craigmile (2005) or Section 9.2 in
Percival and Walden (2000).

6.2 Examining proposed simulation methods

We shall briefly evaluate here various simulation methods proposed in Section 6.1. Several approaches
are possible (see, for example, Bardet et al. (2003)) and we somewhat follow part of the analysis done
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in Craigmile (2005). We focus on simulation of FARIMA(0, δ, 0) time series models and take δ = 0.4.
We shall compare various simulation methods by studying how they perform in the estimation of
long memory parameter δ. For estimation based on a series X0, . . . , XT−1 of length T , we use an
approximate Whittle ML estimator based on minimizing (see, for example, Beran (1994))

log

(
1
M

M∑

k=1

I(λk)
|1− e−iλk |−2δ

)
+

1
M

M∑

k=1

log(|1− e−iλk |−2δ), (6.3)

where λk = 2πk/T are the Fourier frequencies, I(λ) = (2πT )−1|∑T
t=1 eitλXt|2 is the periodogram,

and M is a threshold. We consider M = [(T −1)/2], corresponding to the full approximate likelihood
function, and also the popular choice of M = T 4/5/4, which corresponds to a local likelihood.

Tables 4 and 5 present differences in bias in the estimation of δ when simulation was performed
based on CME method and simulation based on one of the methods described in Section 6.1. Several
sample sizes T and initializations XJ are considered. The number of zero moments of the underlying
MRA is N = 10 and fractional filters of the EAWD-based method were truncated at ε = 10−12. The
tables, in fact, present 95% bootstrap confidence intervals and their centers with entries in bold.
Note from these bold entries that EAWD-based simulation outperforms the other methods, and is
one of the methods that includes 0 in the 95% confidence interval in the largest number of considered
cases. Note also that the performance of all methods with initialization XJ = 0 is quite satisfactory,
which provides evidence in favor of its use (as discussed in Section 6.1).

7 Applications of AWDs: MLE

We examine an application of AWDs to approximate MLE. In Section 7.1, our MLE method is
described. In Sections 7.2 and 7.3, we examine its performance with FARIMA(0, δ, 0) and AR(1)
models.

7.1 Estimation method

AWDs naturally lead to approximate MLE. MLE based on OWDs and AR(1)-based AAWDs was
considered, in particular, by Craigmile et al. (2005). We shall therefore focus on MLE using EAWDs,
when the associated filters are finite (as in Section 7.3 for AR(1) series), and EAWD-based AAWDs,
when the corresponding filters have to be truncated (as in Section 7.2 for FARIMA(0, δ, 0) series).
To explain the estimation method, we shall take a slightly less conventional approach which we find
more revealing and better suited for our purposes.

Suppose one is considering a class of time series models indexed by unknown parameters θ̃, and
having spectral densities f̃

θ̃
(w). As is the case with many models (including those considered here),

suppose also that, with a series aθ = {aθ,n}n≥0 ∈ l2(Z),

f̃
θ̃
(w) =

σ2

2π
|âθ(w)|2 =: σ2fθ(w), (7.1)

where θ̃ = (σ2, θ) and
aθ,0 = 1. (7.2)

Let θ̃0 = (σ2
0, θ0) be the true parameters of a time series to be estimated.

For later reference, suppose for the moment that the whole true time series X0 is available. Then,
under mild assumptions, one expects that

θ0 = argmin
θ

∫ 2π

0

|âθ0(w)|2
|âθ(w)|2 dw = argmin

θ
E(a−1

θ ∗X0)2, (7.3)
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where a−1
θ denotes the inverse filter of aθ, or even stronger,

aθ0 = argmin
a

∫ 2π

0

|âθ0(w)|2
|â(w)|2 dw = argmin

a
E(a−1 ∗X0)2, (7.4)

where a = (a0, a1, . . .) is such that a0 = 1. The basic idea behind (7.3)–(7.4) is that, for b = {bn}n≥0

with b0 = 1, we obviously have

argmin
b

∫ 2π

0
|̂b(w)|2dw = argmin

b
{1 + |b1|2 + |b2|2 + . . .} = (1, 0, 0, . . .).

Relations (7.3)–(7.4) say that the true parameter value is (and hence could be estimated in practice
as) the one for which the corresponding filter best decorrelates the series.

With EAWDs, the same argument as above is applicable due to Theorem 3.4. More precisely,
consider EAWD based on (3.25), and such that

â0(w) = âθ(w) (or a0 = aθ). (7.5)

Denote by ξj,θ
n the detail coefficients in EAWD based on (3.25) and (7.5). By Theorem 3.4 and

(7.3)–(7.4), we have that

θ0 = argmin
θ

∞∑

j=1

2−jE(ξj,θ
n )2. (7.6)

Relation (7.6) suggests the following estimation procedure. Let ξj,θ
n , n = 1, . . . , nj , j = 1, . . . , J ,

be all available detail coefficients in AWD, based on data and not affected by the boundary. In
practice, θ0 could be estimated as

θ̂ = argmin
θ

J∑

j=1

2−j

nj

nj∑

n=1

(ξj,θ
n )2 =: argmin

θ
l̂(θ, J). (7.7)

Since
nj ≈ T

2j
, (7.8)

where T is the length of a given series, the estimator in (7.7) can also be thought of as

θ̂ ≈ argmin
θ

J∑

j=1

nj∑

n=1

(ξj,θ
n )2 =: θ̂1. (7.9)

For later reference, it is useful to introduce

l(θ, J) =
J∑

j=1

2−jE(ξj,θ
n )2 =

1
2π

∫ 2π

0

|âθ0(w)|2
|âθ(w)|2





J∑

j=1

2−j |V̂ j(w)|2


 dw, (7.10)

where the last equality follows from (3.24). (Strictly speaking, the second equality in (7.10) is true
only when estimation is based on EAWD with finite filters, and is an approximation when these
filters are truncated and used in AAWD.) Note also that it is natural to estimate the variance σ2

0

through

σ̂2 =
J∑

j=1

2−j

nj

nj∑

n=1

(ξj,θ̂
n )2 (7.11)

(see Remark 7.1 below).
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Remark 7.1 The estimator (7.7) can obviously be thought of as an approximate (Gaussian) ML
estimator. Given observations X0 = (X0, X1, . . . , XT−1), the exact negative (Gaussian) log-likelihood
is (up to additive and multiplicative constants)

log |Σ̃
θ̃
|+ X0Σ̃−1

θ̃
X0′, (7.12)

where Σ̃
θ̃

is the covariance matrix of the model with unknown parameters θ̃, and | · | denotes the
determinant. Under (7.1) and (7.2), one common simplification (approximation of Grenander and
Szegö (1958)) of the log-determinant in (7.12) is

log |Σ̃
θ̃
| ≈ T

2π

∫ 2π

0
log{2πf

θ̃
(w)}dw = T log σ2, (7.13)

where the last equality follows from the Kolmogorov formula. See, for example, Fox and Taqqu
(1986), Dahlhaus (1989), Chan and Palma (2006) for similar simplifications in the MLE context.
The second term in (7.12) can be approximated using AWD. Using the above notation ξj,θ

n , let Yθ =
(ξ1,θ

1 , . . . , ξJ,θ
nJ ) be the vector of all detail coefficients. The second term in (7.12) can be approximated

by (σ2)−1YθY
′
θ . The approximate log-likelihood function then becomes

T log σ2 + (σ2)−1YθY
′
θ (7.14)

and the corresponding estimators are

θ̂1 = argmin
θ

YθY
′
θ , σ̂2

1 =
1

length(Y
θ̂1

)
Y

θ̂1
Y ′

θ̂1
. (7.15)

Note that the estimator θ̂1 of θ is that given in (7.9). Modulo a possible truncation of filters in
EAWD, all of the above estimators are asymptotically equivalent to exact ML estimators.

Remark 7.2 As mentioned in Section 1, the estimation method introduced in (7.5) is of interest
for several reasons: it is an approximate MLE, is computationally fast, takes more into account the
correlation structure of the series, and ignores polynomial trends. Moreover, though not emphasized
in this work, the methodology can be extended to nonstationary time series.

In the remaining two sections, we examine the proposed method on two classes of models.

7.2 Estimation in the class of FARIMA(0, δ, 0) models

We examine here the performance of our estimation method in the class of FARIMA(0, δ, 0) models
(Section 4). We focus on estimation of the parameter δ only.

First, it is interesting to examine l(δ, J) in (7.10) and l̂(δ, J) in (7.7). In Figure 9, we plot l(δ, J),
for J = 1, . . . , 9, on the intervals δ ∈ [0, 1/2] and [−1/2, 1/2] when the true parameter value is
δ0 = 0.2. With J = 8 or 9, the minimum of l(δ, J) is close to the true value δ0 = 0.2. (For example,
with J = 9, the minimum is at δ = 0.19 at the resolution 0.01 for δ.) For smaller values of J , the
minimum is farther from the true value, and is in the interval [−1/2, 1/2] till about J = 4. Numerical
calculations in Figure 10 show that this difference (bias) is constant across δ0 and hence could be
taken into account in estimation. This invariance to δ0 can also be easily seen in theory. Note that,
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by using (7.10),

argmin
δ

l(δ, J) = argmin
δ

∫ 2π

0

|âδ0(w)|2
|âδ(w)|2





J∑

j=1

2−j |V̂ j(w)|2


 dw

= argmin
δ

∫ 2π

0
|1− e−iw|2(δ−δ0)





J∑

j=1

2−j |V̂ j(w)|2


 dw

= δ0 + argmin
x

∫ 2π

0
|1− e−iw|2x





J∑

j=1

2−j |V̂ j(w)|2


 dw, (7.16)

where the last term does not depend on δ0 (this is the bias which is computed numerically and plotted
in Figure 10). In Figure 11, we present plots of l̂(δ, J) for 20 realizations of FARIMA(0, 0.2, 0) series.
We consider several values of the sample size T = 28, 29, 210 and 211 with the corresponding (largest
available) J = 4, 5, 6 and 7, and plot the corresponding true function l(δ, J) (in thicker line). EAWD-
based AAWD is used based on the filters in (4.15). The number of zero moments used is N = 5
throughout.

In Table 6, we examine the performance of the proposed estimator (EAWD-based AAWD in
the table) and compare it to those of several other estimators. Other estimators considered are the
Whittle approximate ML estimator (based on minimizing (6.3) with M = [(T −1)/2]), the estimator
based on OWD and the estimator based on AR(1)-based AAWD (as discussed in Craigmile et al.
(2005)). The results are reported for FARIMA(0, 0.4, 0) series of length T = 28, 29, 210 and 211. For
wavelet-based methods, Daubechies filters with N = 3 and 6 vanishing moments are considered.
The first line entries in the table cells are bias and standard deviations of the considered estimators
(all based on 1,000 replications), with bias given by BS×10−3 and standard deviation given by
SD×10−2. The entries on the second line under BS for EAWD-based AAWD estimator are bias
corrections according to (7.16). (The other lines under “Whittle” are explained below.)

The results of the table show that the proposed estimator is outperformed by all the other
estimators for the considered sample sizes, in terms of their respective standard deviations (the same
is not exactly true for the bias). This fact might appear surprising in view of Remark 7.1, where it
is argued that our estimator should be viewed as approximate ML estimator. Several explanations
might seem plausible for the loss of efficiency in smaller samples, detailed next.

First, by comparing (7.7) and (6.3), this might be attributed to the presence of the additional,
second term

1
[(T − 1)/2]

[(T−1)/2]∑

k=1

log(|1− e−iλk |−2δ) (7.17)

in (6.3). (The first term without the logarithm in (6.3) can be thought of as (7.7) in view of (7.10)
and the ideal bandpass approximation (4.21).) For estimation here, however, the term (7.17) has
little effect, and this should be expected (and is well known) in view of the approximation (7.13) and
the discussion in Remark 7.1. The second line under SD for “Whittle” in Table 6 presents estimation
results ignoring the term (7.17) and, indeed, these are not that different from those when the term
(7.17) is taken into account. Second, in view of (7.10) and the ideal bandpass approximation (4.21),
the EAWD-based estimator can be thought of as the Whittle-type estimator based on minimizing

1
[(T − 1)/2]−m + 1

[(T−1)/2]∑

k=m

I(λk)
|1− e−iλk |−2δ

(7.18)

for some m ≥ 1. The third line under SD for “Whittle” in Table 6 presents estimation results based
on minimizing (7.18) with the same m = 30 for all considered sample sizes T . Note an accord of
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the values with the corresponding ones for EAWD-based AAWD, confirming the above heuristics.
While the effect of fixed m is negligible in the asymptotic sense, the results reported here show that
this still plays a significant role for smaller sample sizes.

7.3 Estimation in the class of AR(1) models

In this section, we present analogous plots and simulation results for estimation in AR(1) models.
Figures 12 (left plot) and 13 are based on simulated AR(1) series with the true parameter γ1,0 = 0.5.
The bias in Figure 12 (right plot) is not constant in γ1,0, in contrast to Figure 10. This is immediately
evident in theory as the argument in (7.16) cannot be repeated for an AR(1) filter.

The estimation results are reported in Table 7 and analogous observations can be made here as
in Section 7.2. A small difference is that the SD based on EAWD is much closer to those based on
other wavelet methods (and already smaller than that based on OWD when T = 211).

8 Proofs of the main results

Proof of Theorem 3.1: The condition (3.7) ensures that the time series in (3.4) and (3.5) are
well-defined (Theorem 4.10.1 and Remark 1 in Brockwell and Davis (1991), pp. 154-155). The other
parts of statement (i) are trivial. To show that (3.5) holds, consider for simplicity the case j = 1.
(The general case can be proved in an analogous fashion.) Suppose that, as in (2.3),

X0
n =

∫ 2π

0
einwâ0(w)dZ(w)

is the spectral representation of X0. We first establish spectral representations of X1 and ξ1.
By Theorem 4.10.1 in Brockwell and Davis (1991), we obtain that

X1
n =

(
↓2 (U1

d ∗X0)
)

n
=

∫ 2π

0
ei2nwĉ1(w)â0(w)û(w)dZ(w) =

∫ 2π

0
einwdZ1(w)

with

dZ1(w) = ĉ1
(w

2

)
â0

(w

2

)
û
(w

2

)
dZ

(w

2

)
+ ĉ1

(w

2
+ π

)
â0

(w

2
+ π

)
û
(w

2
+ π

)
dZ

(w

2
+ π

)
.

Similarly,

ξ1
n =

(
↓2 (V 1

d ∗X0)
)

n
=

∫ 2π

0
einwdZ2(w)

with

dZ2(w) = d̂1
(w

2

)
â0

(w

2

)
v̂
(w

2

)
dZ

(w

2

)
+ d̂1

(w

2
+ π

)
â0

(w

2
+ π

)
v̂
(w

2
+ π

)
dZ

(w

2
+ π

)
.

We shall next establish (3.5) only at even times n = 2s. (The case n = 2s + 1 can be proved in
a similar way.) Using the spectral representation of X1 above, we obtain that

(U0
r ∗ ↑2 X1)n = (↓2 U0

r ∗X1)s =
1
2

∫ 2π

0
eisw

(
Û0

r

(w

2

)
+ Û0

r

(w

2
+ π

))
dZ1(w)

=
1
2

∫ 2π

0
einwÛ0

r (w)dZ1(2w).

Similarly,

(V 0
r ∗ ↑2 ξ1)n =

1
2

∫ 2π

0
einwV̂ 0

r (w)dZ1(2w).
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Hence,
(U0

r ∗ ↑2 X1)n + (V 0
r ∗ ↑2 ξ1)n

=
∫ 2π

0
einw

(
1
2
Û0

r (w)dZ1(2w) +
1
2
V̂ 0

r (w)dZ2(2w)
)

=
∫ 2π

0
einwâ0(w)dZ(w) = X0

n,

since
1
2
Û0

r (w)dZ1(2w) +
1
2
V̂ 0

r (w)dZ2(2w)

=
1
2
ĉ1(w)−1û(w)

(
ĉ1(w)â0(w)û(w)dZ(w) + ĉ1(w + π)â0(w + π)û(w + π)dZ(w + π)

)

+
1
2
d̂1(w)−1v̂(w)

(
d̂1(w)â0(w)v̂(w)dZ(w) + d̂1(w + π)â0(w + π)v̂(w + π)dZ(w + π)

)

=
1
2

( ĉ1(w + π)
ĉ1(w)

û(w)û(w + π) +
d̂1(w + π)

d̂1(w)
v̂(w)v̂(w + π)

)
â0(w + π)dZ(w + π)

+
1
2

(
|û(w)|2 + |v̂(w)|2

)
â0(w)dZ(w) = â0(w)dZ(w). 2

Proof of Theorem 3.2: We will establish first that approximations Xj = Xj(p) and details
ξj = ξj(p) are well-defined. In fact, we will show that

|Xj
n| ≤ C(1 + |n|)D, (8.1)

where a constant C may depend on j. This bound is trivial for j = 0 since X0 = p is a polynomial
of degree D. Suppose that (8.1) holds for j − 1 and consider it for j. Then,

|Xj
n| ≤

∑

k

|U j
d,kX

j−1
n−k| ≤ C1

∑

k

(1 + |k|)−D−2(1 + |n− k|)D

≤ C2

∑

k

(1 + |k|)−D−2(1 + |n|D + |k|D) ≤ C3(1 + |n|)D,

where the constants C1, C2 and C3 may depend on j. Using (8.1) and the assumed bound for V j
d,n,

the argument above also shows that ξj is well-defined.
To prove (3.9), we will first establish the formula

X̂j(w) =
1
2j

2j−1∑

n=0

{
j∏

k=1

Ûk
d

( w

2j+1−k
+ bn,k

)}
p̂
( w

2j
+

nπ

2j−1

)
, (8.2)

where bn,k ∈ [0, 2π). Since p is not in l2(Z), the use of p̂ has to be clarified. Here and below, equations
in the “spectral domain” should be interpreted through the “time domain” where, in particular, all
products of Fourier transforms should be regarded as convolutions. The relation (8.2) is trivial for
j = 1. Assume it holds for j − 1 and consider it for j. Then, by (2.12),

̂↓2 (U j
d ∗Xj−1)(w) =

1
2

(
Û j

d

(w

2

)
X̂j−1

(w

2

)
+ Û j

d

(w

2
+ π

)
X̂j−1

(w

2
+ π

))

=
1
2j

2j−1−1∑

n=0

j∏

k=1

(
Ûk

d

( w

2j+1−k
+ bn,k

)
p̂
( w

2j
+

nπ

2j−2

)
+ Ûk

d

( w

2j+1−k
+ b

′
n,k

)
p̂
( w

2j
+

π

2j−1
+

nπ

2j−2

))

=
1
2j

2j−1−1∑

n=0

j∏

k=1

(
Ûk

d

( w

2j+1−k
+ bn,k

)
p̂
( w

2j
+

2nπ

2j−1

)
+ Ûk

d

( w

2j+1−k
+ b

′
n,k

)
p̂
( w

2j
+

(2n + 1)π
2j−1

))
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=
1
2j

2j−1∑

n=0

j∏

k=1

Ûk
d

( w

2j+1−k
+ cn,k

)
p̂
( w

2j
+

nπ

2j−1

)
.

Since

ξ̂j(w) =
1
2

(
V̂ j

d

(w

2

)
X̂j−1

(w

2

)
+ V̂ j

d

(w

2
+ π

)
X̂j−1

(w

2
+ π

))

and
V̂ j

d (w) = d̂j(w)v̂(w),

it suffices to prove that, for n = 0, 1, ..., 2j−1 − 1,

v̂
(w

2

)
p̂
( w

2j
+

2nπ

2j−1

)
= 0 (8.3)

and
v̂
(w

2
+ π

)
p̂
( w

2j
+

(2n + 1)π
2j−1

)
= 0. (8.4)

Observe that, by using (8.2), the relation (8.3) follows from

v̂
(
2j−1

( w

2j
+

2nπ

2j−1

))
p̂
( w

2j
+

2nπ

2j−1

)
= v̂(2j−1w′)p̂(w′)

= v̂0,N (2j−1w′)
j∏

k=2

(1 + ei2j−kw′)N (1− eiw′)N p̂(w′) = 0,

since (1− e−iw′)N p̂(w′) = 0. A similar argument applies to (8.4). 2

Proof of Theorem 3.3: It is convenient to continue using the spectral domain arguments as in
the proofs of Theorems 3.1 and 3.2. For X0 = a0 ∗ ε0, for example, we write X̂0 = â0ε̂0 and interpret
ε̂0 as dZ(w) with the latter as in (2.3), and X0

n =
∫ 2π
0 einwX̂0(w)dw =

∫ 2π
0 einwâ0(w)ε̂0(dw) in accord

with (2.3). With this convention, one can see that

X̂j(w) =
1
2j

2j−1∑

k=0

â0
( w

2j
+

2πk

2j

)
F̂ j

( w

2j
+

2πk

2j

)
ε̂
( w

2j
+

2πk

2j

)
,

ξ̂j(w) =
1
2j

2j−1∑

k=0

â0
( w

2j
+

2πk

2j

)
Ĝj

( w

2j
+

2πk

2j

)
ε̂
( w

2j
+

2πk

2j

)
.

The proofs for (3.14)–(3.16) are similar and we only examine (3.16). This relation follows from the
following argument. Note that, for j′ ≥ j, n, n′ ∈ Z,

Eξj
nξj′

n′ = E

∫ 2π

0

∫ 2π

0
einw−in′w′

2j−1∑

k=0

â0
( w

2j
+

2πk

2j

)
Ĝj

( w

2j
+

2πk

2j

)
ε̂
( w

2j
+

2πk

2j

)
·

·
2j′−1∑

k′=0

â0
( w′

2j′ +
2πk′

2j′

)
Ĝj′

( w′

2j′ +
2πk′

2j′

)
ε̂
( w′

2j′ +
2πk′

2j′

)
d

w

2j
d

w′

2j′

= E

∫ 2π/2j

0

∫ 2π/2j′

0
ei2jnx−i2j′n′y

2j−1∑

k=0

â0
(
x +

2πk

2j

)
Ĝj

(
x +

2πk

2j

)
ε̂
(
x +

2πk

2j

)
·
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·
2j′−1∑

k′=0

â0
(
y +

2πk′

2j′

)
Ĝj′

(
y +

2πk′

2j′

)
ε̂
(
y +

2πk′

2j′

)
dxdy

Since

E

∫ 2π/2j

0

∫ 2π/2j′

0
ei2jnx−i2j′n′yâ0

(
x +

2πk

2j

)
â0

(
y +

2πk′

2j′

)
·

· Ĝj
(
x +

2πk

2j

)
Ĝj′

(
y +

2πk′

2j′

)
ε̂
(
x +

2πk

2j

)
ε̂
(
y +

2πk′

2j′

)
dxdy

=
∫ 2π(k′+1−2j′−jk)/2j′

2π(k′−2j′−jk)/2j′
ei2jnx−i2j′n′xâ0

(
x +

2πk

2j

)
â0

(
x +

2πk

2j

)
Ĝj

(
x +

2πk

2j

)
Ĝj′

(
x +

2πk

2j

)dx

2π

for k′ = 2j′−jk, . . . , 2j′−j(k + 1)− 1, and 0 otherwise, or

∫ 2π(k′+1)/2j′

2πk′/2j′
ei(n2j−n′2j′ )w|â0(w)|2Ĝj(w)Ĝj′(w)

dw

2π

for k′ = 2j′−jk, . . . , 2j′−j(k + 1)− 1, and 0 otherwise, we obtain that

Eξj
nξj′

n′ =
∫ 2π

0
ei(n′2j′−n2j)w|â0(w)|2Ĝj(w)Ĝj′(w)

dw

2π
. 2

Proof of Theorem 3.4: Note from (3.17)–(3.19) that

E(ξj
n)2 =

∫ 2π

0
fξj (w)dw =

1
2π

∫ 2π

0
|â0(w)|2|Ĝj(w)|2dw.

The relation (3.22) then follows immediately from the definition (3.13) of Ĝj , and the relation (3.23)
is a consequence of using underlying OWD. 2
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Fan, Y. & Gençay, R. (2006), Unit root and cointegration tests with wavelets, Preprint.

Flandrin, P. (1992), ‘Wavelet analysis and synthesis of Fractional Brownian motion’, IEEE Trans-
actions on Information Theory 38, 910–917.

Fox, R. & Taqqu, M. S. (1986), ‘Large-sample properties of parameter estimates for strongly depen-
dent stationary Gaussian time series’, The Annals of Statistics 14, 517–532.

Grenander, U. & Szego, G. (1958), Toeplitz Forms and their Applications, Chelsea, New York.

Jaffard, S., Lashermes, B. & Abry, P. (2006), Wavelet leaders in multifractal analysis, in T. Qian,
M. I. Vai & X. Yuesheng, eds, ‘Wavelet Analysis and Applications’, Birkhäuser Verlag, Basel,
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Lengths of truncated filters
Filters Cutoff ε N = 2 N = 4 N = 6 N = 10

10−3 8 9 12 19
Ur, 10−5 27 16 16 20
Vd 10−9 375 70 39 30

10−13 5,597 370 124 56
10−3 11 10 13 20

Vr, 10−5 52 19 18 23
Ud 10−9 1,739 111 49 35

10−13 60,007 793 175 65

Table 1: Lengths of truncated fractional filters at cutoff level ε
with δ = 0.4 and the Daubechies MRA with N zero moments.

Lengths of truncated filters
N = 2 N = 4 N = 6 N = 8 N = 10

Filters δ\ε 10−3 10−4 10−3 10−4 10−3 10−4 10−3 10−4 10−3 10−4

−0.4 10 22 9 12 11 13 15 16 18 19
Ur, −0.2 8 17 9 11 12 13 15 16 18 19
Vd 0.2 8 12 9 11 12 13 15 16 18 19

.4 8 15 9 12 12 13 15 16 19 19
−0.4 9 15 11 13 14 15 17 18 21 22

Vr, −0.2 8 14 10 13 13 15 17 18 21 21
Ud 0.2 9 17 10 13 13 15 16 18 20 21

.4 11 23 10 14 13 15 16 18 20 21

Table 2: Lengths of truncated fractional filters at cutoff level ε,
parameter δ and the Daubechies MRA with N zero moments.
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Size of the (2N)th nonzero element
γ1 N = 2 N = 4 N = 6 N = 8 N = 10
0.1 -0.4016 -0.1652 -0.0692 -0.0293 -0.0124

(0.0001) (1× 10−8) (1× 10−12) (1× 10−16) (1× 10−20)
0.3 -0.2556 -0.0718 -0.0207 -0.006 -0.00179

(0.0081) (6.56× 10−5) (5.31× 10−7) (4.3× 10−9) (3.48× 10−11)
0.5 -0.1369 -0.0221 -0.0037 −6.32× 10−4 −1.089× 10−4

(0.0625) (0.0039) (2.4× 10−4) (1.52× 10−5) (9.536× 10−7)
0.7 -0.0516 -0.00336 −2.3012× 10−4 −1.606× 10−5 −1.1353× 10−6

(0.2401) (0.0576) (0.0138) (0.0033) (7.979× 10−4)
0.9 -0.0059 −4.85× 10−5 −4.155× 10−7 −3.649× 10−9 −3.251× 10−11

(0.6561) (0.4304) (0.2824) (0.1853) (0.12157)
0.999 −6.1× 10−7 −5.22× 10−13 3.33× 10−16 1.55× 10−15 −5.51× 10−16

(0.996) (0.992) (0.988) (0.9841) (0.98018)

Table 3: The (2N)th nonzero element of the filter V 0
r for various choices of

γ1 and the Daubechies MRA with N zero moments. The parentheses contain
the value γ2N

1 for comparison.

Differences in bias from CME method; 95% CI and its center
AAWD based on

method EAWD EAWD AR WN
T\XJ exact 0 exact 0 AR 0 WN 0

−.00393 .00273 −.00689 −.00049 −.00450 .00012 −.00108 .01589
256 −.00039 .00594 −.00358 −.00265 −.00120 .00336 .00219 .01937
(28) .00313 .00916 −.00028 .00580 .00208 .00661 .00547 .02291

−.00115 .00123 −.00243 .00212 0.000096 .00174 .00175 .00963
1024 −.00051 .00271 −.00071 .00376 .00174 .00335 .00345 .01123
(210) .00218 .00418 .00099 .00539 .00340 .00496 .00515 .01282

−.00077 .000009 −.00087 −.00059 .00077 .00095 −.00036 .00045
65, 536 .000019 .00072 −.000012 .00020 .00095 .00113 .00043 .00123
(216) .00081 .000144 .00063 .00101 .00113 .00132 .00122 .00201

Table 4: Differences in bias from CME method when M = [(T − 1)/2]:
95% bootstrap confidence intervals with center in bold.
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Differences in bias from CME method; 95% CI and its center
AAWD based on

method EAWD EAWD AR WN
T\XJ exact 0 exact 0 AR 0 WN 0

−.01615 .00654 −.01240 .01128 −.01268 −.00072 −.03408 −.00326
256 −.00919 .01535 −.00499 .019 −.00523 .00353 −.02679 .00415
(28) −.00223 .02417 .00241 .02671 .00220 .00779 −.01951 .01156

−.00380 .00754 −.00474 .00692 −0.00546 −.00319 −.01334 .00575
1024 .00041 .01165 −.00071 .01094 −.00182 .00095 −.00906 .00967
(210) .00464 .01577 .00331 .01497 .00181 .00510 −.00479 .01359

−.00015 −.00014 −.00024 −.000047 .00077 −.00018 −.00108 .01589
65, 536 .000030 .000033 −.000057 .00015 .00095 .00052 −.00219 −.01937
(216) .00021 .00021 .00012 .00035 .00113 .00123 .00547 .02291

Table 5: Differences in bias from CME method when M = T 4/5/4:
95% bootstrap confidence intervals with its center (in bold).

Whittle OWD AR-based AAWD EAWD-based AAWD
T BS SD N BS SD BS SD BS SD
28 -0.1181 5.3301 3 -24.0570 7.5179 -11.5524 7.3680 -149.6794 13.5040

(256) 5.2870 -49.6794
8.6105 6 -19.9726 9.6167 -14.0797 9.0117 -300.6189 20.4007

-70.6189
29 2.4903 3.7302 3 -13.3664 4.7617 -8.7847 4.9632 -67.4455 6.8943

(512) 3.9384 -17.4456
8.2993 6 -6.6289 5.8080 -2.6785 5.5099 -123.3027 8.4662

-13.3027
210 2.0819 2.5361 3 -10.4865 3.0138 -5.5848 2.9768 -32.9087 3.9097

(1024) 2.5690 -2.9088
3.9825 6 -6.2808 3.5593 -4.0755 3.5223 -57.3903 4.6499

-7.3904
211 0.3009 1.8405 3 -7.7201 2.0635 -5.8618 1.9474 -17.6581 2.4173

(2048) 1.7666 -7.6581
2.4087 6 -5.5773 2.3556 -1.3739 2.1987 -31.0907 2.6786

-21.0907

Table 6: Estimation results for FARIMA(0, 0.4, 0) series with estimator bias given by BS×10−3, and
standard deviation by SD×10−2. The entries on the second line under BS for EAWD-based AAWD
are bias corrected values as discussed in Section 7.2. The entries on the second and third lines under
SD for Whittle are explained at the end of Section 7.2.
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Whittle OWD AR-based AAWD EAWD
T BS SD N BS SD BS SD BS SD
28 -6.0450 5.4433 3 -32.6106 6.9459 -22.8381 6.6773 -59.3497 7.5639

(256) 5.3440
6.2196 6 -17.6067 8.9911 -9.5455 8.7830 -121.1312 9.2544

29 -2.6256 3.7908 3 -26.0404 4.4280 -17.8881 4.2618 -26.6541 4.6981
(512) 3.8608

4.4643 6 -12.1983 5.0739 -5.9867 4.9876 -52.5886 5.5276

210 -1.0599 2.7298 3 -23.4273 3.0862 -16.0067 2.9562 -11.9731 3.0987
(1024) 2.6334

2.9856 6 -10.8367 3.2882 -5.2459 3.2112 -25.2154 3.4521

211 -0.8880 1.9464 3 -23.1767 2.1439 -15.9476 2.0701 -6.3215 2.0855
(2048) 1.8699

2.0217 6 -11.0269 2.1998 -5.8309 2.1211 -12.6888 2.2509

Table 7: Estimation results for AR(1), γ1 = 0.5, series with estimator bias given by BS×10−3, and
standard deviation by SD×10−2. The entries on the second and third lines under SD for Whittle are
obtained as for Table 6: see the end of Section 7.2 for an explanation.
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Figure 1: Fractional filters Ur for δ = 0.4 and various N .
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Figure 2: Fractional filters Ur for δ = 0.4 and N = 4 for all possible underlying Daubechies OWD
filters.
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Figure 3: Fractional filters Vr for δ = 0.4 and N = 4 for all possible underlying Daubechies OWD
filters.
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Figure 4: Deviations of spectral densities fξj from (2π)−1 in FARIMA(0, 0.4, 0) model.
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Figure 5: Spectral densities of OWD detail coefficients and their approximations using WN and AR
models in FARIMA(0, 0.4, 0) model.
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Figure 6: Filters V 0
r for various choices of γ1 and the Daubechies MRA with N = 6 zero moments.
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Figure 7: Deviations of spectral densities fξj from (2π)−1 in AR(1) model with parameter γ1 = 0.5.
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Figure 8: Spectral densities of OWD detail coefficients and their approximations using WN and AR
models in AR(1) model with parameter γ1 = 0.5.
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Figure 9: Function l(δ, J) for FARIMA(0, 0.2, 0) model.
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Figure 10: Bias for FARIMA(0, δ0, 0) model.
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Figure 11: Functions l̂(δ, J) for several realizations of FARIMA(0, 0.2, 0) series.
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Figure 12: Function l(γ1, J) for AR(1) model with true parameter γ1,0 = 0.5 (left plot). Bias for
AR(1) model with true parameter γ1,0.
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Figure 13: Functions l̂(γ1, J) for several realizations of AR(1) series with true parameter γ1,0 = 0.5.
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