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Abstract

Operator fractional Brownian motions (OFBMs) are (i) Gaussian, (ii) operator self-similar,
and (iii) stationary increment processes. They are the natural multivariate generalizations of
the well-studied fractional Brownian motions. Because of the possible lack of time reversibil-
ity, the defining properties (i)-(iii) do not, in general, characterize the covariance structure of
OFBMs. To circumvent this problem, the class of OFBMs is characterized here through their
integral representations in the spectral and time domains. For the spectral domain represen-
tations, this involves showing how the operator self-similarity shapes the spectral density in
the general representation of stationary increment processes. The time domain representa-
tions are derived by using primary matrix functions and by taking the Fourier transform of
the deterministic spectral domain kernels. Necessary and sufficient conditions for OFBMs to
be time reversible are established in terms of their spectral and time domain representations.
It is also shown that the spectral density of the stationary increments of OFBM has a rigid
structure, called here Dichotomy Principle. The notion of operator Brownian motions is also
explored.

1 Introduction

Fractional Brownian motion (FBM), denoted BH = {BH(t)}t∈R with H ∈ (0, 1), is a stochastic
process characterized by the following three properties:

(i) Gaussianity;

(ii) self-similarity with parameter H;

(iii) stationarity of the increments.
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By self-similarity, it is meant that the law of BH scales as

{BH(ct)}t∈R
L= {cHBH(t)}t∈R, c > 0, (1.1)

where L= denotes the equality of the finite-dimensional distributions. By stationarity of the incre-
ments, it is meant that the process

{BH(t + h)−BH(h)}t∈R

has the same distribution for any time shift h ∈ R. It may be shown that these three properties
actually characterize FBM in the sense that it is the unique (up to a constant) such process for
a given H ∈ (0, 1). FBM plays an important role in both theory and applications, especially in
connection with long range dependence (Embrechts and Maejima (2002), Doukhan et al. (2003)).

We are interested here in the multivariate counterparts of FBM, called operator fractional
Brownian motions (OFBMs). In the multivariate context, an OFBM BH = (B1,H , . . . , Bn,H)∗

= {(B1,H(t), . . . , Bn,H(t))∗ ∈ Rn, t ∈ R} is a collection of random vectors, where the symbol ∗
denotes transposition. It is also Gaussian and has stationary increments. Moreover, as standard
for the multivariate context, in this paper we assume that OFBM is proper, i.e., for each t the
distribution of BH(t) is not contained in a proper subspace of Rn. However, self-similarity is now
replaced by

(ii′) operator self-similarity.

A proper multivariate process BH is called (strictly) operator self-similar (o.s.s.) if it is continuous
in law for all t, and the expression (1.1) holds for some matrix H. Here, the expression cH is
defined through the convergent series

cH = exp(log(c)H) =
∞∑

k=0

(log c)k Hk

k!
, c > 0.

Operator self-similarity extends the usual notion of self-similarity and was first studied thoroughly
in Laha and Rohatgi (1981) and Hudson and Mason (1982). See also Section 11 in Meerschaert
and Scheffler (2001), and Chapter 9 in Embrechts and Maejima (2002). The theory of operator
self-similarity runs somewhat parallel to that of operator stable measures (see Jurek and Mason
(1993) and Meerschaert and Scheffler (2001)), and is also related to that of operator scaling
random fields (see, for example, Biermé, Meerschaert and Scheffler (2007)).

OFBMs are of interest in several areas and for reasons similar to those in the univariate
case. For example, OFBMs arise and are used in the context of multivariate time series and
long range dependence (see, for example, Marinucci and Robinson (2000), Davidson and de Jong
(2000), Chung (2002), Dolado and Marmol (2004), Davidson and Hashimzade (2008), Robinson
(2008)). Another context is that of queueing systems, where reflected OFBMs model the size of
multiple queues in particular classes of queueing models, and are studied in problems related to, for
example, large deviations (see Konstantopoulos and Lin (1996), Majewski (2003, 2005), Delgado
(2007)). Partly motivated by this interest in OFBMs, several authors consider constructions
and properties of OFBMs. Maejima and Mason (1994), in particular, construct examples of
OFBMs through time domain integral representations. Mason and Xiao (2002) study sample path
properties of OFBMs. Bahadoran, Benassi and Dȩbicki (2003) provide wavelet decompositions of
OFBMs, also study their sample path properties and consider questions of identification. Becker-
Kern and Pap (2008) consider estimation of the real spectrum of the self-similarity exponent.

2



A number of other works on operator self-similarity are naturally related to OFBMs. See, for
example, Section 11 in Meerschaert and Scheffler (2001) and references therein.

To the reader less familiar with OFBMs, we should note that the multivariate case is quite
different from the univariate case. For example, consider an OFBM BH whose exponent H has
characteristic roots hk with positive real parts. By using operator self-similarity and stationarity
of increments, one can argue as in the univariate case that

EBH(t)BH(s)∗ + EBH(s)BH(t)∗

= EBH(t)BH(t)∗ + EBH(s)BH(s)∗ −E(BH(t)−BH(s))(BH(t)−BH(s))∗

= |t|HΓ(1, 1)|t|H∗
+ |s|HΓ(1, 1)|s|H∗ − |t− s|HΓ(1, 1)|t− s|H∗

, (1.2)

where Γ(1, 1) = EBH(1)BH(1)∗ and the symbol ∗ denotes the adjoint operator. However, in
contrast with the univariate case, it is not generally true that

EBH(t)BH(s)∗ = EBH(s)BH(t)∗, (1.3)

and hence the OFBM is not characterized by H and a matrix Γ(1, 1). Another important difference
is that the self-similarity exponent of an operator self-similar process is generally not unique. The
latter fact has been well known since the fundamental work of Hudson and Mason (1982). We
briefly recall it together with some related results in Section 2.2 below.

In this work, we address several new and, in our view, important questions about OFBMs. In
view of (1.2) and (1.3), since the covariance structure of OFBM cannot be determined in general,
we pursue the characterization of OFBMs in terms of their integral representations (Section 3).
In the spectral domain, under the mild and natural assumption that the characteristic roots of H
satisfy

0 < Re(hk) < 1, k = 1, ..., n, (1.4)

we show that OFBM admits an integral representation
∫

R

eitx − 1
ix

(x−(H−(1/2)I)
+ A + x

−(H−(1/2)I)
− A)B̃(dx), (1.5)

where A is a matrix with complex-valued entries, A denotes its complex conjugate, x+ =
max{x, 0}, x− = max{−x, 0}, and B̃(dx) is a suitable multivariate complex-valued Gaussian
measure. In the time domain and when, in addition to (1.4), we have

Re(hk) 6= 1
2
, k = 1, ..., n, (1.6)

OFBM admits the integral representation
∫

R

(
((t− u)H−(1/2)I

+ − (−u)H−(1/2)I
+ )M+ + ((t− u)H−(1/2)I

− − (−u)H−(1/2)I
− )M−

)
B(du), (1.7)

where M+,M− are matrices with real-valued entries, and B(du) is a suitable multivariate real-
valued Gaussian measure. The representation (1.7) is obtained from (1.5) by taking the Fourier
transform of the deterministic kernel in (1.5). We shall provide rigorous arguments for this step by
using primary matrix functions. (Even in the univariate case, very often is this step unjustifiably
taken as more or less evident.) On a related note, but from a different angle, the representations
(1.5) or (1.7) always define Gaussian processes with stationary increments that satisfy (1.1) for a
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matrix H. We shall provide sufficient condition for these processes to be proper (see Section 4)
and, hence, to be OFBMs.

Subclasses of the representations (1.5) or (1.7) were considered in the above referenced works.
Maejima and Mason (1994) consider OFBMs given by the representation (1.7) with M+ = M− =
I. Mason and Xiao (2002) take (1.5) with A = I. Bahadoran et al. (2003) consider (1.5) with
A having full rank and real-valued entries. (Such OFBMs, for example, are necessarily time
reversible. See Theorem 5.1, and also Remark 3.1.) We would like to emphasize again that, in
contrast with these works, the representations (1.5) or (1.7) characterize all OFBMs (under the
mild and natural conditions (1.4), (1.6)).

In particular, the representations (1.5) or (1.7) provide a natural framework for the study
of many properties of OFBMs. In this paper, we provide conditions in terms of A in (1.5) (or
M+,M− in (1.7)) for OFBMs to be time reversible (see Section 5). Time reversibility is shown
to be equivalent to the condition (1.3), and hence, in view of (1.2), corresponds to the situation
when the covariance structure of OFBM is given by

EBH(t)BH(s)∗ =
1
2

(
|t|HΓ(1, 1)|t|H∗

+ |s|HΓ(1, 1)|s|H∗ − |t− s|HΓ(1, 1)|t− s|H∗)
. (1.8)

Another interesting and little explored direction of study of OFBMs is their uniqueness (identi-
fication). This encompasses the characterization of the different parameterizations for any given
OFBM, and, in particular, of the aforementioned non-uniqueness of the self-similarity exponents.
Uniqueness questions in the context of OFBMs are the focus of Didier and Pipiras (?), where they
are explored starting with the representation (1.5), and will be largely absent from this paper.

Furthermore, in this paper we also discuss some additional properties of OFBMs which are
of independent interest. First, we prove that OFBMs have a rigid dependence structure among
components which we call Dichotomy Principle (Section 6). More precisely, under long range
dependence (in the sense considered in Section 6), we show that the components of the incre-
ments of OFBM are either independent or long range dependent, i.e., they cannot be short range
dependent in a nontrivial way. Since, in the univariate case, the increments of FBM are often con-
sidered representative of all long range dependent series, this result raises the question of whether
OFBMs are flexible enough to capture multivariate long range dependence structures. Second,
we also discuss the notion of operator Brownian motions (OBMs) and related questions (Section
7). OBMs are defined as having independent increments and are known to admit H = (1/2)I as
an exponent. We also show, in particular, that an OFBM with H = (1/2)I does not necessarily
have independent increments and hence is not necessarily an OBM. (In contrast, in the univariate
case, H = 1/2 necessarily implies Brownian motion.)

In summary, the structure of the paper is as follows. In Section 2, we provide the necessary
background for the paper and some definitions. In Section 3, we construct integral representa-
tions for OFBMs in the spectral and time domains. Section 4 furnishes sufficient conditions for
properness. Section 5 is dedicated to time reversibility. The Dichotomy Principle is established in
Section 6, and the properties of OBMs are studied in Section 7. Appendices A-D contain several
important technical results used throughout the paper, as well as some proofs.

2 Preliminaries

We begin by introducing some notation and by considering some preliminaries on the exponential
map and operator self-similarity that are used throughout the paper.
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2.1 Some notation

In this paper, the notation and terminology for finite-dimensional operator theory will be prevalent
over their matrix analogues. However, whenever convenient the latter will be used.

All with respect to the field R, M(n) or M(n,R) is the vector space of all n × n operators
(endomorphisms), GL(n) or GL(n,R) is the general linear group (invertible operators, or auto-
morphisms), O(n) is the orthogonal group of operators O such that OO∗ = I = O∗O (i.e., the
adjoint operator is the inverse), SO(n) ⊆ O(n) is the special orthogonal group of operators (ro-
tations) with determinant equal to 1, and so(n) is the vector space of skew-symmetric operators
(i.e., A∗ = −A).

The notation will indicate the change to the field C. For instance, M(n,C) is the vector
space of complex endomorphisms. Whenever it is said that A ∈ M(n) has a complex eigenvalue
or eigenspace, one is considering the operator embedding M(n) ↪→ M(n,C). The notation A
indicates the operator whose matrix representation is entry-wise equal to the complex conjugates
of those of A. We will say that two endomorphisms A,B ∈ M(n) are conjugate (or similar)
when there exists P ∈ GL(n) such that A = PBP−1. In this case, P is called a conjugacy.
The expression diag(λ1, . . . , λn) denotes the operator whose matrix expression has the values
λ1, . . . , λn on the diagonal and zeros elsewhere. The expression tr(A) denotes the trace of an
operator A ∈ M(n,C). We write f ∈ L2(R, M(n,C)) for a matrix-valued function f when
tr{∫R f(u)∗f(u)du} < +∞.

Throughout the paper, we set
D = H − (1/2)I (2.1)

for an operator exponent H. The characteristic roots of H and D are denoted

hk, dk, (2.2)

respectively. Here,
k = 1, . . . , N or n, (2.3)

where N ≤ n is the number of different characteristic roots of H.

For notational simplicity when constructing the spectral and time domain filters, we will adopt
the convention that zD = 0 ∈ M(n,R) when z = 0.

2.2 Operator self-similar processes

Operator self-similar (o.s.s.) processes were defined in Section 1. Any matrix H for which (1.1)
holds is called an exponent of the o.s.s. process X. The set of all such H for X is denoted by
E(X), which in general contains more than one exponent. The non-uniqueness of the exponent
H depends on the symmetry group G1 of X, which is defined as follows.

Definition 2.1 The symmetry group of an o.s.s. process X is the set G1 of matrices A ∈ GL(n)
such that

{X(t)}t∈R
L= {AX(t)}t∈R. (2.4)

It turns out that the symmetry group G1 is always compact, which implies that there exists a
closed subgroup O0 of O(n) such that G1 = WO0W

−1, where W is a positive definite matrix (see,
for instance, Jurek and Mason (1993), Corollary 2.4.2, p. 61). A process X that has maximal
symmetry, i.e., such that G1 = WO(n)W−1, is called elliptically symmetric.
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Let G be a closed (sub)group of operators. The tangent space T (G) of G is the set of A ∈ M(n)
such that

A = lim
n→∞

Gn − I

dn
, for some {Gn} ⊆ G and some 0 < dn → 0.

In this sense, T (G) is, in fact, a linearization of G in a vicinity of I. Theorem 2 in Hudson and
Mason (1982) shows that, for any given o.s.s. process X with exponent H, the set of exponents
E(X) has the form E(X) = H + T (G1), where T (G1) = WL0W

−1 for the positive definite
conjugacy matrix W associated with G1 and some subspace L0 of so(n). Consequently, X has a
unique exponent if and only if G1 is finite.

3 Integral representations of OFBMs

Representations of OFBMs in the spectral domain are derived in Section 3.1. The corresponding
representations in the time domain are given in Section 3.2. The derivation of these representations
is quite different from that in the univariate case. In the latter case, it is enough to “guess” the
form of the spectral representation and to verify that it gives self-similarity and stationarity of
the increments (and hence, immediately, FBM). In the multivariate case, these representations
actually have to be derived from the properties of OFBMs, without any guessing involved.

3.1 Spectral domain representations

In Theorem 3.1 below, we establish integral representations of OFBMs in the spectral domain.

Theorem 3.1 Let H ∈ M(n,R) with characteristic roots hk satisfying

0 < Re(hk) < 1, k = 1, . . . , n. (3.1)

Let {BH(t)}t∈R be an OFBM with exponent H. Then, {BH(t)}t∈R admits the integral represen-
tation

{BH(t)}t∈R
L=

{∫

R

eitx − 1
ix

(x−D
+ A + x−D

− A)B̃(dx)
}

t∈R
(3.2)

for some A ∈ M(n,C). Here, D is as in (2.1),

B̃(x) := B̃1(x) + iB̃2(x) (3.3)

denotes a complex-valued multivariate Brownian motion such that B̃1(−x) = B̃1(x) and
B̃2(−x) = −B̃2(x), B̃1 and B̃2 are independent, and the induced random measure B̃(dx) sat-
isfies EB̃(dx)B̃(dx)∗ = dx.

Proof: For notational simplicity, set X = BH . Since X has stationary increments, we have

X(t)−X(s) =
∫

R

eitx − eisx

ix
Ỹ (dx), (3.4)

where Ỹ (dx) is an orthogonal-increment random measure in Cn. The relation (3.4) can be proved
following the approach for the univariate case found in Doob (1953), p. 550, under the assumption
that E|X(t + h) − X(t)|2 → 0 as h → 0, i.e., X is L2-continuous at every t (see also Yaglom
(1987), p. 409, and Yaglom (1957), Theorem 7). The latter assumption is satisfied in our context
because of the following. Property 2.1 in Maejima and Mason (1994) states that, for an o.s.s.
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process Z with exponent H, if inf{Re(hk); k = 1, . . . , n} > 0, then Z(0) = 0 a.s. Thus, in view of
(3.1), X(0) = 0 a.s. So, by stationarity of the increments and continuity in law,

X(t + h)−X(t) L= X(h) L→ X(0) = 0, h → 0. (3.5)

Therefore, by relation (3.4) and again by Property 2.1 in Maejima and Mason (1994),

X(t) =
∫

R

eitx − 1
ix

Ỹ (dx). (3.6)

Let FX(dx) = EỸ (dx)Ỹ (dx)∗ be the multivariate spectral distribution of Ỹ (dx). The rest of the
proof goes in three steps:

(i) showing the existence of a spectral density function fX(x) = FX(dx)/dx,

(ii) decorrelating the measure Ỹ (dx) component-wise by finding a filter based upon the spectral
density function,

(iii) developing the form of the filter.

Step (i): Since X is o.s.s. with exponent H,

X(ct) L= cH

∫

R

eitx − 1
ix

Ỹ (dx), (3.7)

for c > 0. On the other hand, through a change of variables x = c−1v,

X(ct) L=
∫

R

eitv − 1
iv

cỸ (c−1dv). (3.8)

The relations (3.7) and (3.8) provide two spectral representations for the process {X(ct)}t∈R. As
a consequence of the uniqueness of the spectral distribution function of the stationary process

{X(t)−X(t− 1)}t∈R and of the fact that
∣∣∣ eix−1

ix

∣∣∣
2

> 0, x ∈ R\{2πk, k ∈ Z}, we obtain that

c2FX(c−1dx) = cHFX(dx)cH∗
, c > 0.

Equivalently, by a simple change of variables, FX(cdx) = cI−HFX(dx)c(I−H)∗ . Thus, for c > 0,
∫

(0,1]
FX(cdx) = FX(0, c] = cI−HFX(0, 1]c(I−H)∗ , (3.9)

∫

(−1,0]
FX(cdx) = FX(−c, 0] = cI−HFX(−1, 0]c(I−H)∗ . (3.10)

By the explicit formula for cI−H in Appendix D, each individual entry FX(0, c]ij , i, j = 1, . . . , n,
in the expression on the right-hand side of (3.9) is either a linear combination (with complex
weights) of terms of the form

(log(c))l

l!
c1−hq

(log(c))m

m!
c1−hk , q, k = 1, . . . , n, l, m = 0, . . . , n− 1, (3.11)

or is identically zero for c > 0. Thus, FX(c) is differentiable in c over (0,∞) since FX(0, c]ij =
FX(c)ij − FX(0)ij . The differentiability of FX on (−∞, 0) follows from (3.10) and an analogous
argument.
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To finish the proof of the absolute continuity of FX , it suffices to show that FX is continuous
at zero. Note that

FX(−c, c] = cI−HFX(−1, 1]c(I−H)∗ → 0,

as c → 0+. The limit holds because
∥∥cI−H

∥∥ → 0, as c → 0+, where ‖.‖ is the matrix norm, which
in turn follows from Proposition 2.1,(ii) in Maejima and Mason (1994) under the assumption that
Re(hk) < 1, k = 1, . . . , n.

Step (ii): Denote the spectral density of X by fX . Since
∣∣∣1−e−ix

ix

∣∣∣
2
fX(x) is the spectral

density of the stationary process {X(t)−X(t−1)}t∈R, fX(x) is a positive semidefinite Hermitian-
symmetric matrix dx-a.e. (Hannan (1970), Theorem 1, p. 34). The Spectral Theorem yields a
(unique) positive semidefinite square root â(x) of fX(x). Let B̃(x) be a complex-valued multi-
variate Brownian motion as in the statement of the theorem. Then, X can also be represented
as

X(t) L=
∫

R

eitx − 1
ix

â(x)B̃(dx) (3.12)

because
E(â(x)B̃(dx)B̃(dx)∗â(x)∗) = â(x)2dx = fX(x)dx = FX(dx),

and the processes on both sides of (3.12) are Gaussian and real-valued.
Step (iii): By using operator self-similarity and arguing as in Step (i), the relation (3.12)

implies that, for every c > 0,

â(x)â(x)∗ = c−Dâ
(x

c

)
â
(x

c

)∗
c−D∗ dx-a.e. (3.13)

By Fubini’s Theorem, the relation (3.13) also holds dxdc-a.e.
Consider x > 0. A change of variables leads to

â(x)â(x)∗ = x−DvDâ(v)â(v)∗vD∗x−D∗ dxdv-a.e.

Thus, one can choose v+ > 0 such that

â(x)â(x)∗ = x−DvD
+ â(v+)â(v+)∗vD∗

+ x−D∗ dx-a.e. (3.14)

This means, in particular, that if we set

α̂+(x) = x−DvD
+ â(v+)

for dx-a.e. x > 0, then α̂+(x)α̂+(x)∗ = fX(x) on the same domain.
Again by considering the stationary process {X(t)−X(t− 1)}t∈R, and by applying Theorem

3, p. 41, in Hannan (1970), one can show that fX is a Hermitian function. Thus,

â(−x)â(−x)∗ = fX(−x) = fX(x) = x−DvD
+ â(v+)â(v+)∗ vD∗

+ x−D∗ dx-a.e.

Hence, for x < 0, we can set
α̂−(x) = (−x)−D

+ vD
+ â(v+)

and, for x ∈ R, we have

α̂(x) = x−D
+ vD

+ â(v+) + x−D
− vD

+ â(v+) dx-a.e.,

where α̂(x)α̂(x)∗ = fX(x) dx-a.e. Therefore, we can use α̂ in place of â in the spectral represen-
tation of X, which establishes relation (3.2). 2

8



Remark 3.1 The invertibility of A in relation (3.2) is not a requirement for the process to
be proper (compare with Bahadoran et al. (2003), p. 9). In the Gaussian case, properness is
equivalent to EX(t)X(t)∗ being a full-rank matrix for all t 6= 0.

A simple example would be that of a bivariate OFBM whose spectral representation has matrix
parameters D = d I, 0 < d < 1/2, and A set to the (unique) nonnegative square root of

A2 =
(

1 i
i 1

)
,

which is rank-deficient. Denote

g(t) =
∫ ∞

0

∣∣∣e
itx − 1

ix

∣∣∣
2
|x|−2ddx,

which is strictly positive for all t 6= 0. In this case,

EX(t)X(t)∗ =
∫

R

∣∣∣e
itx − 1

ix

∣∣∣
2
|x|−2d(A21{x≥0} + A21{x<0})dx

= g(t)
(

2 i + i
i + i 2

)
= 2g(t)I.

Theorem 3.1 shows that OFBM is characterized by a (potentially non-unique) o.s.s. exponent
H and a matrix A. For the sake of simplicity, we will continue to use the notation BH instead of
a more correct notation BH,A.

Remark 3.2 As a consequence of Corollary 2.1 in Maejima and Mason (1994), the characteristic
roots hk of the exponent H of an OFBM must satisfy Re(hk) ≤ 1, k = 1, . . . , n. However, the
extension of the definition of OFBM to the case of H with at least one characteristic root hk

satisfying Re(hk) = 1 can be subtle. In Proposition C.1, it is shown that there does not exist an
OFBM with exponent

H =
(

1 0
1 1

)
,

whose characteristic roots are h1 = h2 = 1. (More precisely, it is shown that a Gaussian, H-
o.s.s. process X = (X1, X2)∗ with stationary increments is necessarily such that X1(t) = 0 and
X2(t) = tY a.s. for a Gaussian variable Y , and hence that it cannot be proper.)

3.2 Time domain representations

Our next goal is to provide integral representations of OFBMs in the time domain, which is done
in Theorem 3.2 below. The key technical step in the proof is the calculation of the (entry-wise)
Fourier transform of the kernels

(t− u)D
± − (−u)D

± = exp(log(t− u)±D)− exp(log(−u)±D), (3.15)

which are the multivariate analogues of the corresponding univariate FBM time domain kernels.
It is natural and convenient to carry out this step in the framework of the so-called primary
matrix functions. The latter allows one to naturally define matrix analogues f(D), D ∈ M(n,R),
of univariate functions f(d), d ∈ R, and to say when two such matrix-valued functions are equal
based on their univariate counterparts.
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For the reader’s convenience, we recall the definition of primary matrix functions (more details
and properties can be found in Horn and Johnson (1991), Sections 6.1 and 6.2). Let Λ ∈ M(n,C)
with minimal polynomial

qΛ(z) = (z − λ1)r1 . . . (z − λN )rN , (3.16)

where λ1, . . . , λN are pairwise distinct, and rk ≥ 1 for k = 1, . . . , N , N ≤ n. We denote by
Λ = PJP−1 the Jordan decomposition of Λ, where J is in Jordan canonical form with the Jordan
blocks Jλ1 , . . . , JλN

on the diagonal.
Let U ⊆ C be an open set. Given a function h : U → C and some Λ ∈

M(n,C) as above, consider the conditions: (M1) λk ∈ U , k = 1, . . . , N ; (M2) if
rk > 1, then h(z) is analytic in a vicinity Uk 3 λk, where Uk ⊆ U . Let Mh =
{Λ ∈ M(n,C); conditions (M1) and (M2) hold at the characteristic roots λ1, . . . , λN of Λ}. We
now define the primary matrix function h(Λ) associated with the scalar-valued stem function
h(z).

Definition 3.1 The primary matrix function h : Mh → M(n,C) is defined as

h(Λ) = Ph(J)P−1 = P




h(Jλ1) . . . 0
...

. . .
...

0 . . . h(JλN
)


P−1,

where

h(Jλk
) =




h(λk) 0 . . . 0

h′(λk) h(λk)
. . . 0

...
. . . . . .

...
h(rk−1)(λk)

(rk−1)! . . . h′(λk) h(λk)




.

The following technical result is proved in Appendix A. The functions (t − u)D± , Γ(D + I),
|x|−D, e∓sign(x)iπD/2 appearing in the result below are all primary matrix functions. The same
interpretation is also adopted throughout the rest of the paper, for example, with functions
sin(πD/2), cos(πD/2) appearing in Theorem 3.2 below. (It should also be noted, in particular,
that the definition of the matrix exponential based on a series is equivalent to that based on
primary matrix functions.)

Proposition 3.1 Under (3.1) and condition (3.18) in Theorem 3.2 below,
∫

R
eiux

(
(t− u)D

± − (−u)D
±

)
du =

eitx − 1
ix

|x|−DΓ(D + I)e∓sign(x)iπD/2. (3.17)

Next, we construct time domain representations for OFBMs, which is the main result in this
section. Further comments about the result can be found after the proof.

Theorem 3.2 Let {BH(t)}t∈R be an OFBM with o.s.s. exponent H having the spectral represen-
tation (3.2) with A = A1 + iA2, where A1, A2 ∈ M(n,R).

(i) Suppose that H ∈ M(n,R) has characteristic roots satisfying (3.1) and

Re(hk) 6= 1
2
, k = 1, . . . , n. (3.18)
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Then, there are M+,M− ∈ M(n,R) such that

{BH(t)}t∈R
L=

{∫

R

(
((t− u)D

+ − (−u)D
+)M+ + ((t− u)D

− − (−u)D
−)M−

)
dB(u)

}
t∈R

, (3.19)

where {B(u)}u∈R is a vector-valued process consisting of independent Brownian motions and
such that EdB(u)dB(u)∗ = du. Moreover, the matrices M+, M− can be taken as

M± =
√

π

2

(
sin

(πD

2

)−1
Γ(D + I)−1A1 ± cos

(πD

2

)−1
Γ(D + I)−1A2

)
. (3.20)

(ii) Suppose that H = (1/2)I. Then, there exist M,N ∈ M(n,R) such that

{BH(t)}t∈R
L=

{∫

R

(
(sign(t− u)− sign(−u))M + log

( |t− u|
|u|

)
N

)
dB(u)

}
t∈R

, (3.21)

where {B(u)}u∈R is as in (3.19). Moreover, the matrices M , N can be taken as

M =
√

π

2
A1, N = −

√
2
π

A2. (3.22)

Proof: (i) Denote the process on the right-hand side of (3.19) by XH . By using the Jordan
Decomposition of D, it is easy to show that XH is well-defined. It suffices to show that there
are M± such that the covariance structure of XH matches that of the OFBM BH given by its
spectral representation (3.2) with A = A1 + iA2. By using the Plancherel identity, note first that

EXH(s)XH(t)∗ =

=
1
2π

∫

R

(eisx − 1)(e−itx − 1)
|x|2

(
|x|−DΓ(D + I)(e−sign(x)iπD/2M+ + esign(x)iπD/2M−)

)
·

·
(
(M∗

+esign(x)iπD∗/2 + M∗
−e−sign(x)iπD∗/2)Γ(D + I)∗|x|−D∗

)
dx.

Meanwhile, for BH , we have

EBH(s)BH(t)∗ =
∫

R

(eisx − 1)(e−itx − 1)
|x|2 (x−D

+ AA∗x−D∗
+ + x−D

− AA∗x−D∗
− )dx. (3.23)

Thus, by using the relation eiΘ = cos(Θ)+i sin(Θ), Θ ∈ M(n), it is sufficient to find M± ∈ M(n,R)
such that

AA∗ =
1
2π

Γ(D + I)(e−iπD/2M+ + eiπD/2M−)·

·(M∗
+eiπD∗/2 + M∗

−e−iπD∗/2)Γ(D + I)∗

=
1
2π

Γ(D + I)
(

sin
(πD

2

)
(M+ −M−)(M∗

+ −M∗
−) sin

(πD∗

2

)

+cos
(πD

2

)
(M+ + M−)(M∗

+ + M∗
−) cos

(πD∗

2

)

+ i
(

cos
(πD

2

)
(M+ + M−)(M∗

+ −M∗
−) sin

(πD∗

2

)

− sin
(πD

2

)
(M+ −M−)(M∗

+ + M∗
−) cos

(πD∗

2

)))
Γ(D + I)∗. (3.24)

11



On the other hand,
AA∗ = (A1A

∗
1 + A2A

∗
2) + i(A2A

∗
1 −A1A

∗
2). (3.25)

By comparing (3.25) and (3.24), a natural way to proceed is to consider M+ and M− as solutions
to the system

A1 =
1√
2π

Γ(D + I) sin
(πD

2

)
(M+−M−), A2 =

1√
2π

Γ(D + I) cos
(πD

2

)
(M+ + M−). (3.26)

By assumption (3.18), sin
(

πD
2

)
, cos

(
πD
2

)
and Γ(D+I) are invertible, and we obtain the solution

given by (3.20).

(ii) In this case, one can readily compute the inverse Fourier transform of the integrand in
(3.2), that is (up to (2π)−1),

∫

R
e−iux

(eitx − 1
ix

)
(1{x>0}A + 1{x<0}A)dx

=
∫

R

(cos((t− u)x)− cos((t− u)x) + i(sin((t− u)x) + sin(ux))
ix

)
(1{x>0}A + 1{x<0}A)dx.

As shown in Appendix B, this becomes

−2 log
( |t− u|

|u|
)
A2 + (sign(t− u)− sign(−u))πA1.

Then, by considering second moments and using Plancherel’s identity, representation (3.21) holds
with M = (2π)−1/2πA1 and N = (2π)−1/2(−2)A2. It is well-defined because the integrand
comes from the inverse Fourier transform of a square-integrable function and hence is also square-
integrable. 2

Remark 3.3 Note that the invertibility of M or N in (3.19) is not a requirement for the process
to be proper. A simple example would be that of a bivariate OFBM BH whose time domain
representation (3.19) has matrix parameters H = h I, h ∈ (0, 1)\{1/2},

M =
(

1 0
0 0

)
, N =

(
0 0
0 1

)
.

The two components of BH are two independent (univariate) FBMs with exponent h. Thus, BH

is proper.

Example 3.1 When (3.18) does not hold and H 6= (1/2)I, the general form of time domain
representations can be quite intricate. For example, with

D =
(

0 0
1 0

) (
H =

(
1/2 0
1 1/2

))
,

the calculation of the inverse Fourier transform (up to (2π)−1)
∫

R
e−iux

(eitx − 1
ix

)
(x−D

+ A + x−D
− A)dx (3.27)
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in Appendix B show that BH has the time domain representation

{BH(t)}t∈R
L=

{∫

R

(
f1(t, u)M + f2(t, u)N

)
dB(u)

}
t∈R

, (3.28)

where M =
√

π
2 A1, N = −

√
2
π A2,

f1(t, u) =
(

sign(t− u)− sign(−u) 0
(C + log |t− u|)sign(t− u)− (C + log |u|)sign(−u) sign(t− u)− sign(−u)

)
,

f2(t, u) =


 log

( |t−u|
|u|

)
0

log
( |t−u|

|u|
)(

C + 1
2 log(|t− u||u|)

)
log

( |t−u|
|u|

)

 ,

where C is Euler’s constant. Note that, without taking the Fourier transform of (3.28), it is by
no means obvious why its right-hand side has stationary increments and is o.s.s.

4 Conditions for properness

We now provide sufficient conditions for a process with spectral and time domain representations
(3.2) and (3.19), respectively, to be proper, and thus, to be an OFBM.

Proposition 4.1 Let {X(t)}t∈R be a process with spectral domain representation (3.2), where
the characteristic roots of H satisfy (3.1). If Re(AA∗) is a full rank matrix, then {X(t)}t∈R is
proper (i.e., it is an OFBM).

Proof: We must show that

EX(t)X(t)∗ =
∫

R

∣∣∣e
itx − 1

ix

∣∣∣
2
(x−D

+ AA∗x−D∗
+ + x−D

− AA∗x−D∗
− )dx, t 6= 0,

is a full rank matrix. For simplicity, denote dµ(x) =
∣∣∣ eitx−1

ix

∣∣∣
2
dx. Then,

EX(t)X(t)∗ =
∫

R
x−D

+ AA∗x−D∗
+ dµ(x) +

∫

R
x−D

+ AA∗x−D∗
+ dµ(x)

= 2
∫

R
x−D

+ Re(AA∗)x−D∗
+ dµ(x).

The matrix
∫
R x−D

+ Re(AA∗)x−D∗
+ dµ(x) is Hermitian positive semidefinite. Moreover, for any

v ∈ Cn\{0},
v∗

(∫

R
x−D

+ Re(AA∗)x−D∗
+ dµ(x)

)
v > 0,

where the strict inequality follows from the fact that (v∗x−D
+ )Re(AA∗)(x−D∗

+ v) > 0 for all x > 0,
the latter being a consequence of the invertibility of x−D

+ and the assumption that Re(AA∗) has
full rank. 2

Based on Proposition 4.1, we can easily obtain conditions for properness based on time domain
parameters. Consider a process {X(t)}t∈R with time domain representation (3.19), where the
characteristic roots of H satisfy (3.1) and (3.18). If

M+ + M−, M+ −M−

are full rank matrices, then {X(t)}t∈R is proper (i.e., it is an OFBM).
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Remark 4.1 Re(AA∗) having full rank does not imply that AA∗ has full rank, since i(A2A
∗
1 −

A1A
∗
2) may have negative eigenvalues. Note also that Re(AA∗) being a full rank matrix is not

a necessary condition for properness. For example, consider the process {X(t)}t∈R with spectral
representation (3.2), where

AA∗ =
(

1 2
2 4

)
, H =

(
h1 0
0 h2

)
, h1, h2 ∈ (0, 1).

Then,

EX(t)X(t)∗ =
∫

R

∣∣∣e
itx − 1

ix

∣∣∣
2
( |x|−2(h1−1/2) 2|x|−((h1−1/2)+(h2−1/2))

2|x|−((h1−1/2)+(h2−1/2)) 4|x|−2(h2−1/2)

)
dx

=
( |t|2h1C2(h1)2 2|t|h1+h2C2(h1+h2

2 )2

2|t|h1+h2C2(h1+h2
2 )2 4|t|2h2C2(h2)2

)
,

where
C2(h)2 =

π

hΓ(2h) sin(hπ)
(4.1)

(see, for instance, Samorodnitsky and Taqqu (1994), p. 328). Therefore, det(EX(t)X(t)∗) = 0 if
and only if

C2(h1)2C2(h2)2 =
(
C2

(h1 + h2

2

)2)2
,

which generally does not hold.

5 Time reversibility of OFBMs

We shall provide here conditions for OFBM to be time reversible. Recall that a process X is said
to be time reversible if

{X(t)}t∈R
L= {X(−t)}t∈R. (5.1)

When X is a zero-mean multivariate Gaussian stationary process, (5.1) is equivalent to

EX(s)X(t)∗ = EX(−s)X(−t)∗, s, t ∈ R,

which in turn is equivalent to

EX(s)X(t)∗ = EX(t)X(s)∗, s, t ∈ R.

The next proposition provides necessary and sufficient conditions for time reversibility in the case
of Gaussian processes with stationary increments. It is stated without proof, since the latter is
elementary.

Proposition 5.1 Let X be a Gaussian process with stationary increments and spectral represen-
tation

{X(t)}t∈R
L=

{∫

R

eitx − 1
ix

Ỹ (dx)
}

t∈R
,

where Ỹ (dx) is an orthogonal-increment random measure in Cn. The following statements are
equivalent:

(i) X is time reversible;
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(ii) EỸ (dx)Ỹ (dx)∗ = EỸ (−dx)Ỹ (−dx)∗;

(iii) EX(s)X(t)∗ = EX(t)X(s)∗, s, t ∈ R.

The following result on time reversibility of OFBMs is a direct consequence of Proposition 5.1.

Theorem 5.1 Let {BH(t)}t∈R be an OFBM with exponent H and spectral representation (3.2).
Let A = A1 + iA2, where A1, A2 ∈ M(n,R). Then, BH is time reversible if and only if

AA∗ = AA∗ or A2A
∗
1 = A1A

∗
2. (5.2)

Proof: From Proposition 5.1, (ii), time reversibility is equivalent to

E
(
(x−D

+ A + x−D
− A)B̃(dx)B̃(dx)∗(A∗x−D∗

+ + A∗x−D∗
− )

)

= E
(
(x−D
− A + x−D

+ A)B̃(−dx)B̃(−dx)∗(A∗x−D∗
− + A∗x−D∗

+ )
)

or
x−D

+ AA∗x−D
+ + x−D

− AA∗x−D∗
− = x−D

− AA∗x−D
− + x−D

+ AA∗x−D∗
+ dx-a.e.

Since |x|D is invertible for x > 0, this is equivalent to (5.2). 2

Corollary 5.1 Let {BH(t)}t∈R be an OFBM with time domain representation given by (3.19),
and exponent H satisfying (3.1) and (3.18). Then, BH is time reversible if and only if

cos
(πD

2

)
(M+ + M−)(M∗

+ −M∗
−) sin

(πD∗

2

)

= sin
(πD

2

)
(M+ −M−)(M∗

+ + M∗
−) cos

(πD∗

2

)
. (5.3)

Proof: As in the proof of Theorem 3.2, under (3.18) the matrices sin(πD/2), cos(πD/2) and
Γ(D + I) are invertible, and thus by using (3.26) one can equivalently reexpress condition (5.2)
as (5.3). 2

A consequence of Theorem 5.1 is that non-time reversible OFBMs can only emerge in the
multivariate context, since in the univariate context condition (5.2) is always satisfied. Another
elementary consequence of Proposition 5.1 is the following result, which partially justifies the
interest in time reversibility in the case of OFBMs.

Proposition 5.2 Let {BH(t)}t∈R be an OFBM with H satisfying (3.1). If {BH(t)}t∈R is time
reversible, then its covariance structure is given by the function

EBH(s)BH(t)∗ =
1
2

(
|t|HΓ(1, 1)|t|H∗

+ |s|HΓ(1, 1)|s|H∗ − |t− s|HΓ(1, 1)|t− s|H∗)
, (5.4)

where Γ(1, 1) = EBH(1)BH(1)∗. Conversely, an OFBM with covariance function (5.4) is time
reversible.
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Proof: This follows from Proposition 5.1, (iii). 2

Remark 5.1 One should note that, for a fixed exponent H, not every positive definite matrix
Γ(1, 1) leads to a valid covariance function (5.4) for time reversible OFBMs.

In fact, fix Γ(1, 1) = I, n = 2. We will show that, for an exponent of the form

H =
(

h 0
1 h

)
, h ∈ (0, 1),

there does not exist a time reversible OFBM BH such that EBH(1)BH(1)∗ = Γ(1, 1).
From Theorem 5.1,

EBH(1)BH(1)∗ =
∫

R

∣∣∣e
ix − 1
ix

∣∣∣
2
|x|−DAA∗|x|−D∗dx, (5.5)

where (sij)i,j=1,2 := AA∗ ∈ M(n,R). We have

|x|−DAA∗|x|−D∗ = |x|−2d

(
1

log(x) 1

)(
s11 s12

s12 s22

)(
1 log(x)

1

)

=
(

s11 s11 log(x) + s12

s11 log(x) + s12 s11(log(x))2 + 2s12 log(x) + s22

)
.

For notational simplicity, denote

rk(d) =
∫

R

∣∣∣e
ix − 1
ix

∣∣∣
2
(log(x))k|x|−2ddx, k = 0, 1, 2.

We obtain

EBH(1)BH(1)∗ =
(

s11r0(d) s11r1(d) + s12r0(d)
s11r1(d) + s12r0(d) s11r2(d) + 2s12r1(d) + s22r0(d)

)
.

On the other hand, for any real symmetric matrix, the condition for it to have equal eigenvalues
is that the discriminant of the characteristic polynomial be zero. In terms of EBH(1)BH(1)∗, this
means that

s11r0(d) = s11r2(d) + 2s12r1(d) + s22r0(d), s11r1(d) + s12r0(d) = 0.

Therefore, s11 = s12 = s22 = 0, which contradicts the assumption that Γ(1, 1) = I.
This issue is a problem, for instance, in the context of simulation methods that require knowl-

edge of the covariance function. For time reversible OFBMs with diagonalizable H, one natural
way to parameterize Γ(1, 1) is through the formula (5.5), since in this case the former can be
explicitly computed (see Helgason, Pipiras and Abry (2010)).

Finally, we provide a result (Proposition 5.3) characterizing time reversibility of some OFBMs
in terms of their symmetry group G1 (see Section 2.2). This result will be used several times in
the next section.

Proposition 5.3 Let {BH(t)}t∈R be an OFBM such that hI ∈ E(BH) for some h ∈ (0, 1). Then,
{BH(t)}t∈R is time reversible if and only if G1(BH) is conjugate to O(n).

16



Proof: Regarding necessity, note that, if such BH is time reversible, then by Theorem 5.1 its
covariance function can be written as

Γ(t, s) =
∫

R

(eitx − 1
ix

)(e−isx − 1
−ix

)
|x|−2dISdx

for some positive definite S ∈ M(n) (note that if S is only positive semidefinite, then the process
is not proper).

For sufficiency, consider the covariance function of OFBM with exponent H = hI, h ∈ (0, 1),

Γ(t, s) =
∫

R

(eitx − 1
ix

)(e−isx − 1
−ix

)
(x−2dI

+ AA∗ + x−2dI
− AA∗)dx.

Denote B̃H = W−1BH , where WO(n)W−1 = G1(BH) for a positive definite W . Then, for any
O ∈ O(n),

{OB̃H(t)}t∈R
L= {B̃H(t)}t∈R.

By the uniqueness of the spectral distribution function, this implies that O
(
W−1AA∗W−1

)
O∗ =

W−1AA∗W−1, that is, O(W−1AA∗W−1) = (W−1AA∗W−1)O. Since O is any matrix in O(n),
then W−1AA∗W−1 = cI, c ∈ C\{0} (for a proof of this technical result, see Didier and Pipiras
(2010)). Thus, AA∗ = cW 2, and c > 0. Hence, AA∗ = AA∗. 2

6 Dichotomy principle

We now take a closer look at the increments of OFBM, which form a stationary process.

Definition 6.1 Let {BH(t)}t∈R be an OFBM. The increment process

{YH(t)}t∈T
L= {BH(t + 1)−BH(t)}t∈T , where T = Z or R,

is called operator fractional Gaussian noise (OFGN).

From Theorem 3.1, the spectral representation of OFGN in continuous time is

{YH(t)}t∈R
L=

{∫

R
eitx eix − 1

ix
(x−D

+ A + x−D
− A)B̃(dx)

}
t∈R

. (6.1)

Then, the spectral density of {YH(t)}t∈R is

fYH
(x) =

|eix − 1|2
|x|2 (x−D

+ AA∗x−D∗
+ + x−D

− AA∗x−D∗
− ), x ∈ R, (6.2)

since the cross terms are zero.
In discrete time, analogously to the univariate expression,

EYH(0)YH(n)∗ =
∫ π

−π
einx

∞∑

k=−∞
fYH

(x + 2πk) dx, n ∈ Z. (6.3)

Then, the spectral density of {YH(n)}n∈Z is

gYH
(x) = 2(1− cos(x))

∞∑

k=−∞

1
|x + 2πk|2

(
(x + 2πk)−D

+ AA∗(x + 2πk)−D∗
+

+ (x + 2πk)−D
− AA∗(x + 2πk)−D∗

−
)
, x ∈ [−π, π]. (6.4)

The form (6.4) of the spectral density leads to the following result.
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Theorem 6.1 Let H be an exponent with (possibly repeated) characteristic roots hl, l = 1, . . . , n,
such that

1/2 < Re(hl) < 1, l = 1, . . . , n. (6.5)

Let gYH
(x) = {gYH

(x)ij} be the spectral density (6.4) of OFGN in discrete time. Then, for fixed
i, j, either

(i) |gYH
(x)ij | → ∞, as x → 0, or

(ii) gYH
(x)ij ≡ 0 on [−π, π].

Proof: Let dl and N be as in (2.2) and (2.3), and take x > 0. By assumption (6.5), 0 <
Re(dl) < 1/2. For a given z > 0, if we take −D in Jordan canonical form PJP−1, we obtain that

z−D = P diag(zJ−d1 , . . . , zJ−dN ) P−1,

where J−dl
is a Jordan block in J , l = 1, . . . , N ≤ n. Without loss of generality, for k ≥ 0, each

term of the summation (6.4) involves the matrix expression

P diag((x + 2πk)
J−d1
+ , . . . , (x + 2πk)

J−dN
+ ) P−1A·

·A∗(P ∗)−1 diag((x + 2πk)
J∗−d1
+ , . . . , (x + 2πk)

J∗−dN
+ ) P ∗. (6.6)

Denote the entries of the matrix-valued function (6.6) by h(x+2πk)ij , i, j = 1, . . . , n. By Appendix
D, h(x + 2πk)ij is a linear combination (with complex coefficients) of terms of the form

p(x + 2πk)(x + 2πk)−dlq(x + 2πk)(x + 2πk)−dm , l, m = 1, . . . , N,

where p(x), q(x) are polynomials (with complex coefficients) in log(x). Thus,

sup
x∈[−π,π]

∣∣∣
∞∑

k=1

1
|x + 2πk|2 h(x + 2πk)ij

∣∣∣ < ∞, i, j = 1, . . . , n, (6.7)

and, therefore,

lim
x→0

2(1− cos(x))
( 1
|x|2 h(x)ij +

∞∑

k=1

1
|x + 2πk|2 h(x + 2πk)ij

)

= lim
x→0

2(1− cos(x))
( 1
|x|2 h(x)ij

)
.

On the other hand, since Re(dl) > 0 for l = 1, . . . , n, h(x)ij diverges as the power function (times
some p(x)q(x)) as x → 0 unless it is identically zero for all x (in particular, for x + 2πk). Thus,
by (6.7) and the fact that 2(1−cos(x))

x2 → 1 as x → 0, the claim follows. 2

In the univariate context, the range (1/2, 1) for H is commonly known as that of long range
dependence (LRD). In the multivariate context, characteristic roots of H with real parts between
1/2 and 1 have the potential to generate divergence of the spectrum at zero. Theorem 6.1 thus
states that, if OFGN is long range dependent in the sense of (6.5), then the cross correlation
between any two components is characterized by the following dichotomy :

• it either has a divergent spectrum at zero, a characteristic usually associated with LRD; or
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• it is identically equal to zero.

Obtaining a similar dichotomy principle for a larger range of characteristic roots than that
in (6.5) is much more delicate. The following two examples illustrate some of the potential
difficulties. Example 6.1 shows that if one of the characteristic roots of D = H − (1/2)I is 0, the
dichotomy may not hold. Example 6.2 shows that certain cancellations may occur in the cross
spectrum if the characteristic roots of D have opposite signs.

Example 6.1 If, for instance, D = Pdiag(d, 0)P−1, where 0 < d < 1/2,

P =
(

1
√

2/2
0

√
2/2

)
,

and A := P , then, as x → 0,

gYH
(x) ∼

(
x−2d + 1/2 1/2

1/2 1/2

)
,

where ∼ indicates entry-wise asymptotic equivalence. As a consequence, if one of the components
of OFBM behaves like Brownian motion, this may create cross short range dependence among the
components. This example is a direct consequence of a more general operator parameter D whose
eigenspaces are not the canonical axes. If we take, instead, D = diag(d, 0), whose eigenspaces are
the canonical axes, each term of the summation (6.4) has the form

diag((x + 2πk)−d
± , 0) AA∗ diag((x + 2πk)−d

± , 0) =
(

s11(x + 2πk)−2d
± 0

0 0

)
,

where
(sij)i,j=1,2 := AA∗, (6.8)

and thus the dichotomy holds.

Example 6.2 Consider A ∈ GL(n,R) and D = diag(d,−d), where d ∈ (0, 1/2). Using the
notation (6.8), we have

gYH
(x) ∼ Pdiag(x−d, xd)P ∗AA∗Pdiag(x−d, xd)P ∗ =

(
s11x

−2d s12

s12 s22x
2d

)

as x → 0. Here, the multivariate differencing effects of the operator D cancel out in the cross-
entries.

From a practical perspective, Theorem 6.1 raises the question of whether the class of OFGNs
is flexible enough to capture multivariate LRD structures. This and related issues regarding
multivariate discrete time series will be explored in future work.

7 Operator Brownian motions

In this section, we shall adopt the following definition of multivariate Brownian motion, and
establish some of its properties.

Definition 7.1 The proper process {BH(t)}t∈R is an operator Brownian motion (OBM) if it is a
Gaussian o.s.s. process which has stationary and independent increments, and satisfies BH(0) = 0
a.s.
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In place of the condition BH(0) = 0 a.s., we can assume that the characteristic roots of the
o.s.s. exponent H have positive real parts, which implies the former. Another important way to
motivate Definition 7.1 is the following. Since {BH(t)}t∈R is L2-continuous (see the beginning of
the proof of Theorem 3.1), by Theorem 4 in Hudson and Mason (1981) and Theorem 7 in Hudson
and Mason (1982), Definition 7.1 implies that (1/2)I can always be taken as an o.s.s. exponent
of OBM.

The next proposition and example show that an OFBM BH with (1/2)I ∈ E(BH) is not
necessarily an OBM. This stands in contrast with the univariate case.

Proposition 7.1 Let {BH(t)}t∈R be an OFBM with exponent H = (1/2)I. Consider its time
domain representation (3.21) with parameters M and N , or its spectral domain representation
(3.2) with A = A1 + iA2. Then, {BH(t)}t∈R is an OBM if and only if the following two equivalent
conditions hold:

(i) MN∗ = NM∗;

(ii) A2A
∗
1 = A1A

∗
2.

Proof: Since (1/2)I ∈ E(BH), BH(0) = 0 a.s. So, we only have to establish that the increments
are independent if and only if (i) holds. The equivalence between (i) and (ii) is straightforward
by using the relation (3.22).

Write the time domain representation (3.21) of BH as
∫

R

(
2(1{t−u>0} − 1{−u>0})M + (log |t− u| − log | − u|)N

)
dB(u). (7.1)

Take s1 < t1 < s2 < t2. For the increments of the process BH , we have

E(BH(t1)−BH(s1))(BH(t2)−BH(s2))∗

=
∫

R

(
4 1{s1<u<t1}1{s2<u<t2}MM∗ + log

|t1 − u|
|s1 − u| log

|t2 − u|
|s2 − u|NN∗

+2 1{s1<u<t1} log
|t2 − u|
|s2 − u|MN∗ + 2 1{s2<u<t2} log

|t1 − u|
|s1 − u|NM∗

)
du. (7.2)

From the univariate time domain representation of Brownian motion, the first two of the four
terms in (7.2) have zero integral. Define ϕ(u) = u(log(u) − 1). The right-hand side of the
expression (7.2) then becomes

(ϕ(t2 − s1)− ϕ(t2 − t1)− ϕ(s2 − s1) + ϕ(s2 − t1))MN∗

+(ϕ(t2 − t1)− ϕ(s2 − t1)− ϕ(t2 − s1) + ϕ(s2 − s1))NM∗,

which is identically zero if and only if MN∗ = NM∗. 2

Example 7.1 Consider a bivariate process X defined by expression (7.1). Set M = I, and let
N = L ∈ so(2)\{0}. Then, MN∗ = −NM∗ 6= 0 (from which the cross terms in expression (7.2)
cancel out when s1 = s2 = 0 and t1 = t2 = t), and

EX(t)X(t)∗ = 4|t|I + π2|t|L(−L) = |t|(4I − π2L2),

which is a full rank matrix for t 6= 0 (to obtain the constant π2, one can use, for instance,
Proposition 9.2 in Taqqu (2003) and Proposition 5.1 in Stoev and Taqqu (2006)). Hence, X is
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proper. This gives an example of an OFBM for which (1/2)I ∈ E(X) but which is not an OBM.
Moreover, it is an example of an OFBM with an exponent of the form hI, h ∈ (0, 1), but which is
not time reversible, and for which G1

∼= O(2) does not hold by Proposition 5.3 (by contrast, by
Theorem 6 in Hudson and Mason (1982), G1(X) ∼= O(n) implies that hI ∈ E(X) for some h.).

The following result is a direct consequence of Theorem 5.1 and Proposition 7.1. It shows that,
in the class of OFBMs with exponent H = (1/2)I, time reversibility is equivalent to independence
of increments.

Corollary 7.1 Let {BH(t)}t∈R be a time reversible OFBM with exponent H = (1/2)I. Then,
{BH(t)}t∈R is an OBM. Conversely, let {BH(t)}t∈R be an OBM. Then, it is time reversible (and
has exponent H = (1/2)I).

Remark 7.1 Note that, as a consequence of Proposition 5.3, time reversibility may be replaced
in Corollary 7.1 by the condition of G1 being conjugate to O(n). In other words, an OBM is
elliptically symmetric.

We conclude by providing a spectral representation for OBM.

Proposition 7.2 Let {BH(t)}t∈R be an OBM. Then,

{BH(t)}t∈R
L=

{∫

R

eitx − 1
ix

WB̃(dx)
}

t∈R
L= {WB(t)}t∈R (7.3)

for some positive definite operator W , where {B(t)}t∈R is a vector of independent standard BMs.

Proof: Consider the spectral domain representation of BH with parameter A = A1 + iA2. Set
W := (A1A

∗
1 + A2A

∗
2)

1/2. The result follows from Proposition 7.1, (ii), and relations (3.23) and
(3.25). 2

A Fourier transforms of OFBM kernels

In this section, the goal is to prove Proposition 3.1. First, we state a condensed version of
Theorems 6.2.9 and 6.2.10 in Horn and Johnson (1991), pp. 412-416, which will be useful in the
subsequent derivations. We shall use the notation set before Definition 3.1.

Theorem A.1 Let f, g : U → C be two stem functions, and let Mfg = Mf ∩Mg. Then,

(i) the primary matrix function f : Mf → M(n,C) is well-defined in the sense that the value
of f(Λ), Λ ∈ Mf , is independent of the particular Jordan canonical form (i.e., block per-
mutation) used to represent it;

(ii) f(Λ) = g(Λ) if and only if f (j)(λk) = g(j)(λk) for j = 0, 1, ..., rk − 1, k = 1, ..., N and
Λ ∈Mfg;

(iii) for q(z) := f(z)g(z), we have q(Λ) = f(Λ)g(Λ) = g(Λ)f(Λ) for Λ ∈Mfg;

(iv) for s(z) := f(z) + g(z), we have s(Λ) = f(Λ) + g(Λ) for Λ ∈Mfg.
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Throughout this section, we assume (3.1) and (3.18). Denote by F the Fourier transform
operator. For d ∈ C such that

Re(d) ∈ (−1/2, 1/2)\{0}, (A.1)

define
f±(t, u, d) = (t− u)d

± − (−u)d
±

and

h±(t, x, d) =
eitx − 1

ix
|x|−dΓ(d + 1)e∓sign(x) iπd

2 .

It is well-known that
F(f±(t, ·, d))(x) = h±(t, x, d) (A.2)

when d ∈ (−1/2, 1/2)\{0} (see, for instance, Pipiras and Taqqu (2003), p. 175). One can show
that (A.2) also holds under (A.1) (see Remark A.1 below).

For the purpose of calculating Fourier transforms of primary matrix functions associated with
the stem functions f± and h±, we will need to consider derivatives of the latter with respect to d.
Note that, for fixed x, the functions Γ(d + 1), e∓sign(x) iπd

2 , |x|−d are holomorphic on the domain
−1

2 < Re(d) < 1
2 . Thus, so are the functions h±(t, x, d). Note that, for fixed t and u, since (t−u)d±

and (−u)d± are holomorphic on the domain −1/2 < Re(d) < 1/2, then so are f±(t, u, d).
As a consequence, by Theorem A.1, (i)-(iv),

h±(t, x,D) =
eitx − 1

ix
|x|−DΓ(D + I)e∓sign(x) iπD

2

and
f±(t, u, D) = (t− u)D

± − (−u)D
± .

We now need to show that
F(f±(t, u, D))(x) = h±(t, x, D), (A.3)

where F is the entry-wise Fourier transform operator.

Proof of Proposition 3.1: We will break up the proof into three cases.

Case 1: −1/2 < Re(dk) < 0, k = 1, . . . , N . We will develop the calculations for h+, which can
be easily adapted to h−. By Theorem A.1, (ii), in the case of h+, (A.3) is equivalent to

∂j

∂dj
h+(t, x, d) =

∂j

∂dj

∫

R
eiuxf+(t, u, d)du =

∫

R
eiux ∂j

∂dj
f+(t, u, d)du, (A.4)

at d = dk, for k = 1, . . . , N , j = 0, 1, . . . , rk − 1. Consider the domain ∆(d, d) := {d ∈ C : d <
Re(d) < d)}, where −1/2 < d < d < 0, which is open and convex. Consider j = 1, i.e., the
first derivative. Fix d∗ ∈ ∆(d, d), and take a sequence {dm}m∈N ⊆ ∆(d, d) such that dm → d∗.
For each m, by the Mean Value Theorem for holomorphic functions (Evard and Jafari (1992),
Theorem 2.2), there exist constants δi(m), where

δi(m) = αm,idm + (1− αm,i)d∗, αm,i ∈ (0, 1), i = 1, 2,

such that

f+(t, u, dm)− f+(t, u, d∗)
dm − d∗

= Re
(f+(t, u, dm)− f+(t, u, d∗)

dm − d∗
)

+ i Im
(f+(t, u, dm)− f+(t, u, d∗)

dm − d∗
)
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= Re
( ∂

∂d
f+(t, u, δ1(m))

)
+ i Im

( ∂

∂d
f+(t, u, δ2(m))

)
.

We will now obtain an integrable function that majorizes ∂
∂df+(t, ·, d), for all d ∈ ∆(d, d).

Assume, without loss of generality, that t > 0, and take d ∈ ∆(d, d) and δ > 0 such that
−1/2 < Re(d) − δ and Re(d) + δ < 0. From the continuity of ∂

∂df+(t, u, d) for 0 ≤ u < t, there
exist constants K1 and η1 such that

∣∣∣ ∂

∂d
f+(t, u, d)

∣∣∣ ≤ | log(t− u)+||(t− u)d
+|

≤ K11[0,t−η1](u) +
∣∣∣(t− u)Re(d)−δ

+

∣∣∣1(t−η1,t)(u), u ≥ 0. (A.5)

Also, there exist a constant K2 such that

| log(t− u)+(t− u)d
+ − log(−u)+(−u)d

+| ≤ K2 + |(−u)Re(d)−δ
+ |, −1 ≤ u < 0. (A.6)

One can show that there exist constants K3 and η2 < −1 such that

| log(t− u)+(t− u)d
+ − log(−u)+(−u)d

+| ≤ K3(−u)Re(d)+δ−1
+ , u < η2. (A.7)

From (A.5), (A.6) and (A.7), and from the fact ∂
∂df+(t, u, d) is bounded on η2 ≤ u ≤ −1 uniformly

in d ∈ ∆(d, d), we conclude that the ratio f+(t,·,dm)−f+(t,·,d∗)
dm−d∗ is bounded by a function in L1(R).

Thus, by the Dominated Convergence Theorem (for C-valued functions),
∫

R

f+(t, u, dm)− f+(t, u, d∗)
dm − d∗

du →
∫

R

∂

∂d
f+(t, u, d∗)du, m →∞.

We can always assume that t 6= 0, and the case of t < 0 can be dealt with in a similar fashion. The
extension of the above argument for derivatives of higher order j poses no additional technical
difficulties. This establishes (A.4).

Case 2: 0 < Re(dk) < 1/2, k = 1, . . . , N . In this range, the upper bound in (A.7) is not in
L1(R), so we need a slightly different procedure. Since h±(t, ·, d) ∈ L2(R), then we can apply F−1

on both sides of equation (A.2) and obtain

f±(t, u, d) = F−1(h±(t, ·, d))(u).

Therefore, it suffices to show that

f±(t, u,D) = F−1(h±(t, x, D)), (A.8)

where F−1 is the entry-wise inverse Fourier transform.
Note that expression (A.8) is equivalent to

∂j

∂dj
f±(t, x, d) =

∂j

∂dj

∫

R
eiuxh±(t, x, d)dx =

∫

R
eiux ∂j

∂dj
h±(t, x, d)dx,

at d = dk, for k = 1, . . . , N , j = 0, 1, . . . , rk − 1. To show this, one may proceed as in the case of
−1/2 < Re(d) < 0. The existence of an upper bound in L1(R) is ensured by the fact that

∣∣∣ ∂j

∂dj

((eitx − 1
ix

)
|x|−d

)∣∣∣ ≤
∣∣∣
(eitx − 1

ix

)
| log |x||j |x|−Re(d)

∣∣∣
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≤
∣∣∣
(eitx − 1

ix

)
| log |x||j |x|−Re(d)1{0<|x|≤1}

∣∣∣ +
∣∣∣
(eitx − 1

ix

)
| log |x||j |x|−Re(d)1{1<|x|≤∞}

∣∣∣, (A.9)

which is integrable for all d ∈ ∆(d, d), 0 < d < d < 1/2.

General case: As a consequence of (A.3),

F(f±(t, ·, J))(x) = h±(t, x, J) (A.10)

holds, where J is matrix in Jordan canonical form with characteristic roots satisfying (3.1) and
(3.18). Now pre- and post-multiply equation (A.10) by P and P−1. Since

PΓ(−J)P−1 = Γ(−D), P e
iπ
2

(J+I)P−1 = e
iπ
2

(D+I),

then
Pf±(t, u, J)P−1 = f±(t, u, D), Ph±(t, u, J)P−1 = h±(t, u, D),

from which we obtain equation (A.3). 2

Remark A.1 A common way to prove that (A.2) also holds for d ∈ C satisfying (A.1) is by
analytic continuation. In particular, this requires the ability to differentiate under the integral
sign in the Fourier transform. The latter could be achieved by following the argument in the proof
of Proposition 3.1.

B Some useful integrals

In this section, we calculate the inverse Fourier transforms used in the proof of Theorem 3.2, (ii),
and Example 3.1. We shall use several formulas from Gradshteyn and Ryzhik (2007):

∫

R
1{x<0}

sin(ax)
x

dx =
∫

R
1{x>0}

sin(ax)
x

dx =
π

2
sign(a) (p. 423) (B.1)

∫

R
1{x>0}

cos(ax)− cos(bx)
x

dx = log
|b|
|a| (p. 447) (B.2)

(therefore, ∫

R
1{x<0}

cos(ax)− cos(bx)
x

dx = − log
|b|
|a|

)
(B.3)

∫ ∞

0
log(x) sin(ax)

dx

x
= −π

2
(C + log(a)), a > 0 (p. 594) (B.4)

(therefore, with a ∈ R,

∫ ∞

0
log(x) sin(ax)

dx

x
=

∫ 0

−∞
log(x−) sin(ax)

dx

x
= −π

2
(C + log |a|)sign(a)

)
(B.5)

∫ ∞

0
log(x)(cos(ax)− cos(bx))

dx

x
= log

(a

b

)(
C +

1
2

log(ab)
)
, a, b > 0, (p. 594) (B.6)

where C is Euler’s constant
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(therefore,
∫ 0

−∞
log(x−)(cos(ax)− cos(bx))

dx

x
= − log

( |a|
|b|

)(
C +

1
2

log(|ab|)
) )

. (B.7)

Using these formulas, we obtain that, for x > 0,
∫

R
e−iux eitx − 1

ix
1{x>0}dx

=
∫

R

1
ix

(
cos((t− u)x)− cos(ux) + i(sin((t− u)x) + sin(ux))

)
1{x>0}dx

=
1
i

log
( |u|
|t− u|

)
+

π

2
(sign(t− u)− sign(−u)).

Similarly, for x < 0, ∫

R
e−iux eitx − 1

ix
1{x<0}dx

=
∫

R

1
ix

(
cos((t− u)x)− cos(ux) + i(sin((t− u)x) + sin(ux))

)
1{x<0}dx

= −1
i

log
( |u|
|t− u|

)
+

π

2
(sign(t− u)− sign(−u)).

Therefore, ∫

R
e−iux eitx − 1

ix
(1{x>0}A + 1{x<0}A)dx

= (sign(t− u)− sign(−u))
1
2

Re(A) + log
( |u|
|t− u|

) 1
π

Im(A), (B.8)

which is the formula used in the proof of Theorem 3.2, (ii).
We now turn to the calculations of the inverse Fourier transform (3.27) in Example 3.1. Note

that

|x|−D =
(

1 0
− log |x| 1

)
, x > 0.

We only need to calculate the inverse Fourier transform of the log term on the lower off-diagonal.
For x > 0, using the formulas above,

∫

R
e−iux eitx − 1

ix
log(x+)1{x>0}dx

=
∫

R

1
ix

(
cos((t− u)x)− cos(ux) + i(sin((t− u)x) + sin(ux))

)
log(x+)1{x>0}dx

=
1
i

log
( |t− u|

|u|
)(

C +
1
2

log(|t− u||u|)
)
− π

2
((C + log |t− u|)sign(t− u)− (C + log |u|)sign(−u)).

Similarly, for x < 0, ∫

R
e−iux eitx − 1

ix
log(x−)1{x<0}dx

=
∫

R

1
ix

(
cos((t− u)x)− cos(ux) + i(sin((t− u)x) + sin(ux))

)
log(x−)1{x<0}dx
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= −1
i

log
( |t− u|

|u|
)(

C +
1
2

log(|t−u||u|)
)
− π

2
((C +log |t−u|)sign(t−u)− (C +log |u|)sign(−u)).

Therefore, for a ∈ C,
∫

R
e−iux eitx − 1

ix
(− log(x+)1{x>0}a− log(x−)1{x<0}a)dx

=
(
(C + log |t− u|)sign(t− u)− (C + log |u|)sign(−u)

)1
2
Re(a)

+ log
( |t− u|

|u|
)(

C +
1
2

log(|t− u||u|)
)(

− 1
π

)
Im(a). (B.9)

By combining (B.9) and (B.8), one obtains the time domain kernels on the right-hand side of
(3.28).

C Nonexistence of OFBM for certain exponents

Proposition C.1 below is mentioned in Remark 3.2.

Proposition C.1 There does not exist an OFBM with exponent

H =
(

1 0
1 1

)
.

Proof: Assume that such an OFBM exists. For notational simplicity, denote the process by
X, and its entry-wise processes by X1 and X2. We will show that X is not a proper process.

Note that, for c > 0, from the matrix expression for cH and o.s.s.,
{(

X1(ct)
X2(ct)

)}

t∈R

L=
{(

cX1(t)
c log(c)X1(t) + cX2(t)

)}

t∈R
. (C.1)

In particular, this implies that X1 is FBM with Hurst exponent 1. Thus, X1(t) = tZ a.s., where
Z is a Gaussian random variable (e.g., Taqqu (2003)). By plugging this into (C.1),

{(
ctZ

X2(ct)

)}

t∈R

L=
{(

ctZ
c log(c)tZ + cX2(t)

)}

t∈R
. (C.2)

In particular, by taking c = t and t = 1, (C.2) implies that

EX2(t)Z = E(t log(t)Z + tX2(1))Z = t log(t)EZ2 + tEX2(1)Z.

Thus,
E(X2(t + h)−X2(h))(X1(1 + h)−X1(h)) = EX2(t + h)Z − EX2(h)Z

= ((t + h) log(t + h)− h log(h))EZ2 + tEX2(1)Z. (C.3)

By stationarity of the increments, the expression (C.3) does not depend on h, which is possible
only when

EZ2 = 0.

As a consequence, {X2(ct)}t∈R
L= {cX2(t)}t∈R. Thus,

(
X1(t)
X2(t)

)
=

(
0
tY

)
a.s.,

where Y is a Gaussian random variable. In particular, X is not proper. 2
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D The exponential of a matrix in Jordan canonical form

Initially, let Jλ ∈ M(n,C) be a Jordan block of size nλ, whose expression is

Jλ =




λ 0 0 . . . 0
1 λ 0 . . . 0
0 1 λ . . . 0
...

...
...

. . .
...

0 0 . . . 1 λ




. (D.1)

We have

zJλ =




zλ 0 0 . . . 0
(log z)zλ zλ 0 . . . 0
(log z)2

2! zλ (log z)zλ zλ . . . 0
...

...
. . . . . . 0

(log z)nλ−1

(nλ−1)! zλ (log z)nλ−2

(nλ−2)! zλ . . . (log z)zλ zλ




. (D.2)

The expression for zJ , where J is, more generally, a matrix in Jordan canonical form (i.e., whose
diagonal is made up of Jordan blocks), follows promptly. In particular, the series-based notion
of matrix exponential is consistent with the primary matrix function-based notion of the matrix
exponential.
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eds.)’, Birkhäuser, Boston, pp. 5–38.

Yaglom, A. (1957), ‘Some classes of random fields in n-dimensional space, related to stationary
random processes’, Theory of Probability and its Applications II(3), 273–320.

Yaglom, A. (1987), Correlation Theory of Stationary and Related Random Functions. Volume I:
Basic Results, Springer Series in Statistics.

Gustavo Didier Vladas Pipiras
Mathematics Department Dept. of Statistics and Operations Research
Tulane University UNC at Chapel Hill
6823 St. Charles Avenue CB#3260, Smith Bldg.
New Orleans, LA 70118, USA Chapel Hill, NC 27599, USA
gdidier@tulane.edu pipiras@email.unc.edu

29


