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Abstract. We have developed a general-purpose multivariate decomposition mod-
ule for nonlinear response models that incorporates a number of recent contribu-
tions to overcome various problems dealing with path dependence and identifica-
tion. This work extends existing Stata modules in important ways by allowing
weights and model offsets. A companion routine handles covariate grouping to
facilitate summarization of results.
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Introduction

Multivariate decomposition is widely used in social research to quantify the contribu-
tions to group differences in average predictions from multivariate models. The tech-
nique utilizes the output from regression models to parcel out components of a group
difference in a statistic, such as a mean or proportion, which can be attributed to
compositional differences between groups (i.e., differences in characteristics or endow-
ments) and to differences in the effects of characteristics (i.e., differences in the returns,
coefficients, or behavioral responses). These techniques are equally applicable for parti-
tioning change over time into components attributable to changing effects and changing
composition.

This paper introduces a new Stata module mvdcmp for carrying out multivariate
decomposition for a variety of models, including: the classical linear model, probit,
logit, complementary log-log, Poisson and negative-binomial regression. This program is
comparable to several existing Stata modules including: oaxaca (Jann 2008), gdecomp
(Bartus 2006), fairlie (Jann 2006), and nldecompose (Sinning, Hahn, and Bauer
2008). One feature of mvdcmp is that it provides the detailed decomposition for both
the characteristics and coefficients components for various models and also provides
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2 mvdcmp: Multivariate Decomposition

standard errors of these components.1

mvdcmp is primarily intended for use in nonlinear decomposition and is based on
a number of recent contributions which include convenient methods to handle path
dependency (Yun 2004), computing asymptotic standard errors (Yun 2005a), and over-
coming the identification problem associated with the choice of a reference category
when dummy variables are included among the predictors (Yun 2005b; 2008). This pa-
per is organized as follows: Section 1 describes our general approach to aggregate and
detailed decomposition, Section 2 provides several illustrative examples, and Section 3
outlines some possible extensions and future plans for this project.

1 Multivariate Decomposition

Decomposition techniques for linear regression models have been used for many decades.
This heterogeneous collection of techniques is more generally referred to as regression
standardization (Althauser and Wigler 1972, Duncan 1969, Duncan, Featherman and
Duncan 1968, Coleman and Blum 1971, Coleman, Berry, and Blum 1971, Winsbor-
ough and Dickinson 1971). Oaxaca (1973) and Blinder (1973) are usually credited
with introducing regression decomposition in the econometric literature in the early
1970’s. Although their methods are formally identical to those developed in sociology
and demography, the technique has become more commonly known as Oaxaca-Blinder,
Oaxaca, or Blinder-Oaxaca decomposition.

Regression decomposition has been extended to nonlinear models including: probit
(Gomulka and Stern 1990; Even and Macpherson 1993; Pritchett and Yun 2009), logit
(Fairlie 2005, Nielson 1998, Bowblis and Yun 2010), count models (see e.g., Bauer et al.
2007); Park and Lohr 2010), and hazard rate models (Powers and Yun 2009). For linear
regression, logit, and count models, the observed difference in group means, proportions,
or counts (i.e., a difference in the “first moment”) is additively decomposed into a
characteristics (or endowments) component and a coefficient (or effects) component. It
should be noted that in any given application a researcher may be interested in one
or the other of these components, such as in the portion of the total differential that
could be attributed to compositional differences between groups, or to the change in
characteristics over time for a single group (see e.g., Even and Macpherson 1993 and
Nielsen 1998).

1. The fairlie package decomposes a difference in proportions based on logit or probit models into
the characteristics portion only, whereas gdecomp provides both components and extends to models
for count data, but with a different decomposition scheme from that implemented in this module and
without the ability to incorporate model weights and offsets. The nldecompose module handles a variety
of nonlinear models, but does not carry out a detailed decomposition. oaxaca decomposes differences in
means using results from the classical linear model, as well as differences in proportions from logit, and
probit models, with options to provide normalized solutions for dummy variables, covariate grouping,
weighting, and survey design adjustments.
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Table 1: Mapping of X to Y for mvdcmp Models.

Linear Logit Probit† Poisson Neg. Bin.‡ C. log-log

F (Xβ) Xβ
eXβ

1 + eXβ
Φ(Xβ) eXβ eXβ 1− e{−eXβ}

† Φ(.) denotes the cumulative normal distribution function.
‡ includes a gamma-distributed random effect to account for extra-Poisson variation (i.e.,
overdispersion).

1.1 Overall Decomposition

We begin with the standard problem of decomposing a difference in first moments in
which the dependent variable is a function of a linear combination of predictors and
regression coefficients

Y = F (Xβ),

where Y denotes the N × 1 dependent variable vector, X is an N ×K matrix of inde-
pendent variables, and β is a K×1 vector of coefficients. F (.) is any once-differentiable
function mapping a linear combination of X (Xβ) to Y . The mean difference in Y
between groups A and B can be decomposed as

Y A − Y B = F (XAβA)− F (XBβB)

=
[
F (XAβA)− F (XBβA)

]
︸ ︷︷ ︸

E

+
[
F (XBβA)− F (XBβB)

]
︸ ︷︷ ︸

C

. (1)

The component labeled E refers to the part of the differential owing to differences in
endowments or characteristics, usually called the explained component or characteristics
effects. The C component refers to that part of the differential attributable to differences
in coefficients or effects, usually called the unexplained component or coefficients effects.
In Eq. 1 we have chosen group A as the comparison group and group B as the reference
group. Thus, E reflects a counterfactual comparison of the difference in outcomes from
group A’s perspective (i.e., the expected difference if group A were given group B’s
distribution of covariates). C reflects a counterfactual comparison of outcomes from
group B’s perspective (i.e., the expected difference if group B experienced group A’s
behavioral responses to X).2

The same differential (with a change in sign) can be obtained from an alternative
decomposition that switches the roles of the reference and comparison groups. This is
referred to as the “indexing” problem (Neumark 1988, Oaxaca and Ransom 1988; 1994).
By fixing the coefficients in the composition component to group A levels, we assess the
contribution to the differential that would have occurred if the behavioral responses to

2. Only a standard two-way decomposition is available in mvdcmp. Alterative decomposition methods
parcel out the EC interaction as a third component.
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the characteristics were fixed to the values in group A. By fixing characteristics to group
B levels in the coefficient component, we assess the contribution to the differential that
is due to the difference in effects. An equivalent decomposition would reverse this proce-
dure. That is, we could perform a different decomposition by weighting the composition
component by group B’s coefficients while using the observed characteristics of group
A as weights in the coefficient component. Sometimes the average of the results of the
two specifications is reported.

The mapping function F () differs between models as shown in Table 1. For the
linear, logit, and Poisson regression models it is the case that F (Xβ) = Y . For these
models, the maximum likelihood estimates satisfy the estimating equations X ′Y = X ′µ̂,
where µ̂ is a vector of predicted responses, and therefore

∑
Y =

∑
µ̂ and Y = µ̂. Thus,

for the linear, logit, and Poisson regression models, mvdcmp will exactly decompose the
difference in the average observed outcomes (Agresti 2002; Greene 2008). However,
though very close, the equality above does not hold for the probit, negative binomial,
and complementary log-log regression models. In this case, mvdcmp decomposes the
difference in average predicted outcomes.

1.2 Detailed Decomposition

The decomposition thus far has been described at the aggregate level. To understand
the unique contribution of each predictor to each component of the difference requires
a detailed decomposition. That is, we wish to partition E and C into portions, Ek and
Ck (k = 1, . . . ,K) that represent the unique contribution of the kth covariate to E and
C, respectively. One may attempt to compute Ek (Ck) by sequentially substituting one
group’s covariates (coefficients) with other group’s. However, unlike the decomposition
for a linear model, a nonlinear decomposition is sensitive to the order in which the
independent variables enter the decomposition. This problem is referred to as “path
dependence” (see e.g., Yun 2004). Solutions to this problem, involving a strategy of
sequential covariate replacement and randomization of ordering of replacement, have
been proposed by Fairlie (2005) and are implemented in the Stata module fairlie

(Jann 2006).

Even and Macpherson (1993), Nielsen (1998), and Yun (2004) suggested simpler
methods using weights. Yun (2004) obtained weights from a 1st order Taylor lineariza-
tion of Eq. 1 around XAβA and XBβB . The detailed decompositions obtained in this
way are invariant to the order that variables enter the decomposition, thus providing a
convenient solution to path dependency. After linearization, the weight component for
E is

W∆Xk
=

βAk
(XAk

−XBk
)

K∑
k=1

βAk
(XAk

−XBk
)

(2)
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and the kth weight component for C is,

W∆βk
=

XAk
(βAk

− βBk
)

K∑
k=1

XAk
(βAk

− βBk
)

(3)

where ∑
k

W∆Xk
=
∑
k

W∆βk
= 1.0.

Thus, the composition weights W∆Xk
reflect the contribution of the kth covariate to

the linearization of E as determined by the magnitude of the group difference in means
weighted by the reference group’s effect. Similarly, the coefficient weights W∆βk

reflect
covariate k’s contribution to the linearization of C as determined by the magnitude of
the group difference in the effects weighted by the comparison group’s mean. Thus, the
weights are proportional to the contributions to the decomposition of the linear pre-
dictor, in which the relative sizes of the contributions to the explained or unexplained
portions of the outcome differential are equal to the relative contributions to the decom-
position of the linear predictor. The weights are invariant to change in the scale of the
covariates. The raw difference can now be expressed in terms of the overall components
as a sum of weighted sums of the unique contributions.

Y A − Y B = E + C =

K∑
k=1

W∆Xk
E +

K∑
k=1

W∆βk
C =

K∑
k=1

Ek +

K∑
k=1

Ck. (4)

1.3 Variability in Decomposition Estimates

The characteristics and effects components do not provide information about the preci-
sion of the contributions to group differences per se. For this reason, it is important to
gauge the sampling variability (asymptotic variance) of E and C, as well as the detailed
components, in substantive applications. Because the components used in the decom-
position are functions of maximum likelihood estimates, the delta method described
by Rao (1973, Pp. 321-323) can be used to derive asymptotic standard errors of the
detailed contributions. Interval estimation and significance testing can be done in the
usual way (see, e.g., Yun 2005a). This approach utilizes expressions for the gradients
of the detailed components with respect to the estimates, in addition to the variance
covariance matrix of the estimates from each group, as we show next.

The endowment component is obtained as a weighted sum of the individual contri-
butions, Ek,

E =
K∑

k=1

Ek =
K∑

k=1

W∆Xk
{F (XAβA)− F (XBβA). (5)

Interval estimation and statistical hypothesis testing of the components of the detailed
decomposition require computation of the asymptotic variances of the Ek and Ck com-
ponents appearing in the decomposition equation. First we compute the gradient for
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Ek, i.e., ∂Ek/∂β
′
A which is a 1×K vector, the lth element of which is

∂Ek

∂βAl

= W∆Xk

{
∂F (XAβA)

∂βAl

− ∂F (XBβA)

∂βAl

}
+

∂W∆Xk

∂βAl

{
F (XAβA)− F (XBβA)

}
(6)

where

∂W∆Xk

∂βAl

= I(k = l)

[
XAk

−XBk∑
k βAk

(XAk
−XBk

)

]
− βAk

(XAk
−XBk

)(XAl
−XBl

){∑
k βAk

(XAk
−XBk

)
}2 , (7)

and where I(·) is the indicator function. For nonlinear models considered by mvdcmp,

∂F (Xjβj)

∂βl
= f(Xjβj)Xjl j ∈ {A,B}.

Letting E = (E1, . . . , EK) denote the K×1 detailed characteristics effect vector and
ΣΣΣβA

denote the variance/covariance matrix of βA, the asymptotic covariance matrix of
the detailed characteristics component is

ΣΣΣE = GEΣΣΣβA
G′

E ,

where

GE =

(
∂E1

∂β′
A

,
∂E2

∂β′
A

, . . . ,
∂EK

∂β′
A

)
is the K ×K gradient matrix.

Following the same logic, the coefficient component can be written as the sum of
individual contributions as,

C =
K∑

k=1

Ck =
K∑

k=1

W∆βk
{F (XBβA)− F (XBβB)}. (8)

Each covariate’s contribution to the overall coefficient component depends on the
parameter vectors, βA and βB . The lth elements of the gradient for Ck are

∂Ck

∂βAl

= W∆βk
f(XBβA)XBl

+
∂W∆βk

∂βAl

{
F (XBβA)− F (XBβB)

}
and

∂Ck

∂βBl

=
∂W∆βk

∂βBl

{
F (XBβA)− F (XBβB)

}
−W∆βk

f(XBβB)XBl
,

where

∂W∆βk

∂βAl
= I(k = l)

[
XBk∑

k XBk
(βAk

− βBk
)

]
− XBk

XBl
(βAk

− βBk
){∑

k XBk
(βAk

− βBk
)
}2 (9)
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and

∂W∆βk

∂βBl
=

XBk
XBl

(βAk
− βBk

){∑
k XBk

(βAk
− βBk

)
}2 − I(k = l)

[
XBk∑

k XBk
(βAk

− βBk
)

]
, (10)

where I(·) is the indicator function.

Let ΣΣΣβA
and ΣΣΣβB

denote the covariance matrix of the estimates from the group A
and B regressions, and let C = C1, . . . , CK denote the K × 1 detailed coefficient effects
vector. The asymptotic covariance matrix of the detailed coefficient components is then

ΣΣΣC = GCAΣΣΣβAG
′
CA

+GCBΣΣΣβBG
′
CB

where

GCj =

(
∂C1

∂β′
j

,
∂C2

∂β′
j

, . . . ,
∂CK

∂β′
j

)
, j ∈ A,B

is the K ×K gradient matrix and ∂Ck

∂β′
j
is the 1×K gradient vector defined above.

Significance tests on individual components, blocks of components, or for the overall
decomposition, can be carried out using Wald tests by defining sub-vectors of E and C
along with the corresponding sub-matrices of ΣΣΣE and ΣΣΣC. For example, the variance Ek

can be found from the kth element of the main diagonal of ΣΣΣE. The variance estimates
derived above assume that the independent variables are fixed and that groups A and
B are independent. They will underestimate the true variances if this is not the case.

1.4 Normalization of Dummy Variables

It is well known that the detailed Oaxaca decomposition is not invariant to the choice
of the reference category when sets of dummy variables are used (Oaxaca and Ransom
1999).3 Particularly, if a model includes dummy variables, then the sum of the detailed
coefficients effects attributed to the dummy variables is not invariant to the choice of
the reference, or omitted, category. Suppose that we examine the following regression
model containing dummy variables (d’s) representing a factor with I levels:

y = a+

I∑
i=2

diαi + zγ + ε.

The identification problem is that

I∑
i=2

dBi(α̂Ai − α̂Bi) ̸=
I−1∑
i=1

dBi(α̃Ai − α̃Bi),

3. This invariance pertains to the coefficients contribution, Ck.
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where α̂ and α̃ are estimates when the omitted category is the first and the last category,
respectively.

Intuitively, the identification problem can be resolved by averaging the coefficients
effects of a set of dummy variables while permuting the reference groups (Yun 2005b).
This is equivalent to first computing a normalized equation which can identify the
intercept and coefficients of all dummy variables including reference groups by averaging
estimates obtained by permuting the reference groups, then using these along with the
augmented design matrix to perform the decomposition analysis.

The prototypical normalized equation is

y = a∗ +
I∑

i=1

α∗
i di + zγ + ε.

mvdcmp offers the option of constructing a normalized decomposition using a practical
algorithm outlined by Yun (2008) that transforms the estimates of the usual regression
equation. This algorithm, initially developed by Suits (1984), transforms estimates (α)

by imposing an anova-type (or centered-effects) restriction,
∑I

i=1 α
∗
i = 0. When the

coefficients of the normalized equation are further specified as α∗
i = αi + µα, then the

solution for the constraint is

µα = −α = −
I∑

i=1

αi/I,

where the coefficient of the reference group is zero, i.e., α1 = 0. The normalized equation
will be

y = (a+ α) +
I∑

i=1

(αi − α)di + zγ + ε.

Following oaxaca (Jann 2008), we use the devcon module (Jann 2005) to construct the
augmented coefficient vectors and covariance matrices which are input to the decompo-
sition routine along with the augmented design matrix.

1.5 Syntax

mvdcmp groupvar
[
, reverse norm(varlist) scale(#)

]
:model depvar indepvars[

if
] [

in
] [

weight
]

The mandatory groupvar denotes the binary grouping variable. The available models
and options are summarized in Table 2. The options of particular interest are offset

and scale. mvdcmp automatically determines the high-outcome group and uses the
low-outcome group as the reference. This can be overridden with the reverse option.
The scale option is particularly useful when decomposing small differences. It simply
reports results multiplied by a user-specified value. The norm option is based on the same
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Table 2: Models and Options Available in mvdcmp.

Models
regress linear regression model
logit logit model
probit probit model
cloglog complementary log -log model
poisson Poisson regression model
nbreg negative binomial regression model

Options
reverse reverse the decomposition by switching the comparison group
norm(varlist) identify dummy variable sets for ANOVA normalization
scale(#) scale the results [default scale(1)]

option provided in Jann’s (2008) oaxaca module. Additionally, a companion routine
mvdcmpgroup can be called after mvdcmp to generate a coarser decomposition based on
grouping several covariates, such as a collection of socioeconomic variables that may be
more informative when considered together as a single component. This is similar to
that provided by Jann’s (2006) fairlie module. The syntax for mvdcmpgroup is:

mvdcmpgroup (effect name: indepvars)

The first argument in parenthesis effect name is the name of the aggregate effect
and indepvars is a list of covariates that are to be combined into the aggregate effect.

2 Examples

2.1 Logistic Regression

The first example illustrates the basic syntax of the command for decomposing a differ-
ence in proportions using a logit model. Here we decompose the observed black-white
difference in the prevalence of first premarital birth using a logit model with data on a
sample of non-Hispanic whites and blacks from the 1979 National Longitudinal Survey
of Youth (NLSY). We consider a logit model with a set of predictors including: number
of family structure changes up to the time of event (nfamtran), dummy variables for
maternal education (medu1 for less than 12 years of schooling and medu3 for more than
12 years of schooling), family income in thousands of dollars (inc1000), and mother’s
age at respondent’s birth (magebir). We first read the data, construct dummy variables
for maternal education, and examine summary statistics to evaluate compositional dif-
ferences.

use pmbNLSY, clear

* illustrate logit decomposition

gen medu1 = 0
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replace medu1 = 1 if medu < 12

gen medu2 = 0

replace medu2 = 1 if medu == 12

gen medu3 = 0

replace medu3 = 1 if medu > 12

bysort blk: sum devnt nfamtran medu1 medu2 medu3 inc1000 magebir, separator(1000)

The summary statistics indicate large black-white differences in the proportion experi-
encing a first premarital birth (devnt). We observe substantial compositional differences
in number of family transitions, educational attainment, family income and mother’s
age at the time of the respondent’s birth, with blacks exhibiting lower average income
and educational attainment and a greater number of family transitions.

-> blk = 0

Variable | Obs Mean Std. Dev. Min Max

-------------+--------------------------------------------------------

devnt | 2287 .111937 .3153579 0 1

nfamtran | 2287 .4879755 .9509905 0 10

medu1 | 2287 .2706603 .4443981 0 1

medu2 | 2287 .5137735 .4999196 0 1

medu3 | 2287 .2155662 .4113045 0 1

inc1000 | 2287 .9960198 .6180757 0 4.9497

magebir | 2287 25.4769 5.988704 12.25 46.41667

-> blk = 1

Variable | Obs Mean Std. Dev. Min Max

-------------+--------------------------------------------------------

devnt | 1357 .559322 .4966515 0 1

nfamtran | 1357 .6226971 .9228423 0 7

medu1 | 1357 .5092115 .5000994 0 1

medu2 | 1357 .3817244 .4859886 0 1

medu3 | 1357 .1090641 .3118346 0 1

inc1000 | 1357 .547693 .4173302 0 3.7501

magebir | 1357 24.90985 6.769633 12 53.5

Next, we fit models to gauge differences in returns to risk.

. logit devnt nfamtran medu1 medu3 inc1000 magebir if blk==0

Logistic regression Number of obs = 2287

LR chi2(5) = 84.73

Prob > chi2 = 0.0000

Log likelihood = -759.33443 Pseudo R2 = 0.0528
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------------------------------------------------------------------------------

devnt | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

nfamtran | .3159368 .058431 5.41 0.000 .2014142 .4304595

medu1 | .6543009 .1482065 4.41 0.000 .3638215 .9447804

medu3 | -.24361 .2092747 -1.16 0.244 -.6537809 .166561

inc1000 | -.3659533 .1419346 -2.58 0.010 -.6441399 -.0877666

magebir | -.006541 .0113161 -0.58 0.563 -.0287202 .0156382

_cons | -1.951179 .3384512 -5.77 0.000 -2.614531 -1.287827

------------------------------------------------------------------------------

. logit devnt nfamtran medu1 medu3 inc1000 magebir if blk==1

Logistic regression Number of obs = 1357

LR chi2(5) = 77.60

Prob > chi2 = 0.0000

Log likelihood = -892.22964 Pseudo R2 = 0.0417

------------------------------------------------------------------------------

devnt | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

nfamtran | .1761604 .063537 2.77 0.006 .0516301 .3006907

medu1 | .0804944 .1226039 0.66 0.511 -.1598048 .3207936

medu3 | -.8089405 .2015699 -4.01 0.000 -1.20401 -.4138708

inc1000 | -.776516 .1524453 -5.09 0.000 -1.075303 -.4777288

magebir | -.0144374 .0084113 -1.72 0.086 -.0309233 .0020485

_cons | .9614928 .2491499 3.86 0.000 .473168 1.449818

------------------------------------------------------------------------------

We find larger effects of family transitions and low maternal education and smaller
effects of high maternal education and family income among whites. Next we carry out
the decomposition. The overall and detailed results are presented below.

. mvdcmp blk: logit devnt nfamtran medu1 medu3 inc1000 magebir

Decomposition Results Number of obs = 3644

-----------------------------------------------------------------------------------

High outcome group: blk==1 --- Low outcome group: blk==0

-----------------------------------------------------------------------------------

devnt| Coef. Std. Err. z P>|z| [95% Conf. Interval] Pct.

-----------+-----------------------------------------------------------------------

E| .11008 .013362 8.24 0.000 .083886 .13627 24.604

C| .33731 .019516 17.28 0.000 .29906 .37556 75.396

-----------+-----------------------------------------------------------------------

R| .44738 .014598 30.65 0.000 .41877 .476

Due to Difference in Characteristics (E)

-----------------------------------------------------------------------------------

devnt | Coef. Std. Err. z P>|z| [95% Conf. Interval] Pct.
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-----------+-----------------------------------------------------------------------

nfamtran | .0053819 .0019315 2.79 0.005 .0015961 .0091676 1.203

medu1 | .0043545 .0066454 0.66 0.512 -.0086705 .017379 .97331

medu3 | .019537 .0047194 4.14 0.000 .010287 .028787 4.367

inc1000 | .078946 .014059 5.62 0.000 .05139 .1065 17.646

magebir | .0018565 .0010749 1.73 0.084 -.00025026 .0039633 .41497

-----------------------------------------------------------------------------------

Due to Difference in Coefficients (C)

-----------------------------------------------------------------------------------

devnt | Coef. Std. Err. z P>|z| [95% Conf. Interval] Pct.

-----------+-----------------------------------------------------------------------

nfamtran | -.011755 .0072292 -1.63 0.104 -.025924 .0024141 -2.6275

medu1 | -.026766 .008918 -3.00 0.003 -.044245 -.0092867 -5.9828

medu3 | -.021003 .010899 -1.93 0.054 -.042366 .00036009 -4.6946

inc1000 | -.070476 .035964 -1.96 0.050 -.14097 .000013842 -15.753

magebir | -.034671 .061941 -0.56 0.576 -.15608 .086734 -7.7498

_cons | .50198 .07347 6.83 0.000 .35798 .64598 112.2

-----------------------------------------------------------------------------------

We find that differences in effects account for 75% of the observed race differential
in the prevalence of premarital birth, with differences in intercepts (baseline logits)
accounting for most of this. Equalizing family income (inc1000) would be expected to
reduce the black-white premarital birth gap by about 18%. A positive Ek coefficient
indicates the expected reduction in the black-white premarital birth gap if blacks were
equal to whites on the distribution of Xk. In this case, shifting the black distribution on
income and higher maternal education to white levels would provide the largest decrease
in the black-white differential. A negative Ck coefficient indicates the expected increase
in the black-white gap if blacks had the same returns to risk, or behavioral responses, as
whites. In this case we find that if blacks were penalized by family change to the same
extent as whites, the black-white gap would be expected to increase by about 3%. The
protective effects of family income are not as strong for whites as they are for blacks.
If blacks were “protected” from risk to the same degree as whites, the black-white gap
would be expected to increase by about 16%.

2.2 Grouping

Researchers are often interested in determining the total contribution to the differential
for a subset of covariates. In the example below, we aggregate maternal education and
family income into a “socioeconomic component” called SES. The aggregate SES effect
is the sum of the relevant elements of E and C and the covariance matrix is the sum
of the elements of relevant submatrices of ΣΣΣE and ΣΣΣC. We provide a post-estimation
command called mvdcmpgroup to carry out the necessary aggregation. It works with
the returned results from the most recent mvdcmp command, and can be called as many
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times as needed.4

. mvdcmpgroup (SES: medu1 medu3 inc1000)

Decomposition Results Number of obs = 3644

-----------------------------------------------------------------------------------

High outcome group: blk==1 --- Low outcome group: blk==0

-----------------------------------------------------------------------------------

devnt| Coef. Std. Err. z P>|z| [95% Conf. Interval] Pct.

-----------+-----------------------------------------------------------------------

E| .11008 .013362 8.24 0.000 .10973 .11043 24.604

C| .33731 .019516 17.28 0.000 .33656 .33806 75.396

-----------+-----------------------------------------------------------------------

R| .44738 .014598 30.65 0.000 .44697 .4478

Due to Difference in Characteristics (E)

-----------------------------------------------------------------------------------

devnt | Coef. Std. Err. z P>|z| [95% Conf. Interval] Pct.

-----------+-----------------------------------------------------------------------

SES | .10284 .013306 7.73 0.000 .076758 .12892 22.986

-----------------------------------------------------------------------------------

Due to Difference in Coefficients (C)

-----------------------------------------------------------------------------------

devnt | Coef. Std. Err. z P>|z| [95% Conf. Interval] Pct.

-----------+-----------------------------------------------------------------------

SES | -.11825 .039985 -2.96 0.003 -.19662 -.039874 -26.43

-----------------------------------------------------------------------------------

SES: medu1 medu3 inc1000

Focusing on composition, we find that equalizing all SES factors across groups would
reduce the black-white premarital birth gap by about 23%.

2.3 Normalization

In the example above, two categories of maternal education are used—medu1 (mother’s
education < 12 years) and medu3 (mother’s education > 12 years), with the reference
category of exactly 12 years of education. In this case, adopting a different reference
category would change both the education effects and the intercept. We overcome this
limitation by first defining a dummy variable corresponding to each level of the factor
and including the complete set of dummy variables in the norm() option.5

4. A nocons option can be used to show the contributions pertaining to all other model terms excluding
the constant. The subgroup aggregation for multiple groups can be done at once rather than calling
the command multiple times by separating each group with ( ). For example, mvdcmpgroup (SES:

medu1-medu3 inc1000)(MEDU: medu1-medu3), nocons.

5. Though the example includes only one set of dummy variables, norm() can handle multiple sets
of dummy variables. If multiple sets of dummy variables are included, then normalization for each set
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. mvdcmp blk, norm(medu1 medu2 medu3): logit devnt nfamtran medu1 medu3 inc1000

> magebir

Decomposition Results Number of obs = 3644

-----------------------------------------------------------------------------------

High outcome group: blk==1 --- Low outcome group: blk==0

-----------------------------------------------------------------------------------

devnt| Coef. Std. Err. z P>|z| [95% Conf. Interval] Pct.

-----------+-----------------------------------------------------------------------

E| .11008 .013362 8.24 0.000 .083886 .13627 24.604

C| .33731 .019516 17.28 0.000 .29906 .37556 75.396

-----------+-----------------------------------------------------------------------

R| .44738 .014598 30.65 0.000 .41877 .476

Due to Difference in Characteristics (E)

-----------------------------------------------------------------------------------

devnt | Coef. Std. Err. z P>|z| [95% Conf. Interval] Pct.

-----------+-----------------------------------------------------------------------

nfamtran | .0053819 .0019315 2.79 0.005 .0015961 .0091676 1.203

medu1 | .01749 .0047173 3.71 0.000 .008244 .026736 3.9094

medu2 | -.0072711 .0026092 -2.79 0.005 -.012385 -.0021571 -1.6252

medu3 | .013673 .0029876 4.58 0.000 .0078171 .019529 3.0562

inc1000 | .078946 .014059 5.62 0.000 .05139 .1065 17.646

magebir | .0018565 .0010749 1.73 0.084 -.00025026 .0039633 .41497

-----------------------------------------------------------------------------------

Due to Difference in Coefficients (C)

-----------------------------------------------------------------------------------

devnt | Coef. Std. Err. z P>|z| [95% Conf. Interval] Pct.

-----------+-----------------------------------------------------------------------

nfamtran | -.011755 .0072292 -1.63 0.104 -.025924 .0024141 -2.6275

medu1 | -.0090538 .0062153 -1.46 0.145 -.021236 .0031281 -2.0237

medu2 | .033622 .011764 2.86 0.004 .010564 .05668 7.5152

medu3 | -.006896 .0068765 -1.00 0.316 -.020374 .006582 -1.5414

inc1000 | -.070476 .035964 -1.96 0.050 -.14097 .000013842 -15.753

magebir | -.034671 .061941 -0.56 0.576 -.15608 .086734 -7.7498

_cons | .43654 .072496 6.02 0.000 .29445 .57863 97.576

-----------------------------------------------------------------------------------

The coefficients for maternal education now reflect the results of model fitting using
an anova-type normalization in which the coefficients in the logistic regression model
sum to zero across levels of maternal education. The model’s constant term thus reflects
a scaled grand mean of the baseline log odds. The transformed augmented coefficients
and covariance matrix are input to the decomposition routine along with the augmented

should be separated by |. Dummy variables for all levels of a factor must be included in the norm()

statement. For example, norm(a1-a3 | b1 b2), indicates that normalization is to be applied to a 3-
category factor denoted by the dummy variables a1, a2, and a3 and a 2-category factor denoted by the
dummy variables b1 and b2.
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model design matrix. It can be easily verified that aggregate effects and the sum of
the characteristics effect of the dummy variables do not change with normalization.
However, the coefficients effect of the constant and sum of the coefficients effect of the
dummy variables change with normalization.

2.4 Negative Binomial Regression

Next we provide an illustration of a count model. This example considers a negative
binomial model for the number of abortions occurring to individual women in the NLSY
over the period from 1979 to 1997. It is reasonable to expect that there may be de-
pendence between the pregnancy outcomes that comprise the pregnancy history for a
given woman. This unobserved heterogeneity is referred to as frailty in demographic
research (see, e.g., Heckman and Singer 1985; Hougaard 1984; Vaupel and Yashin 1985),
the effects of which have been recognized for some time (see, e.g., Blumen et al. 1955;
Greenwood and Yule 1920; Strehler and Mildvan 1960).6 We can build this dependency
into the model by specifying a multiplicative factor v that raises or lowers the expected
number of abortions for a specific woman in the population. The negative binomial re-
gression model assumes that v follows a gamma distribution normalized to have a mean
of 1 with variance α. The resulting conditional distribution of Y is a Poisson-gamma
mixture. Integrating out the random effect v yields the unconditional distribution for
Y (number of abortions), which follows a negative binomial distribution with mean µ
and variance µ+µ2α (see., e.g. Cameron and Trividi 1998; Long 1997; Long and Freese
2006). Following the notation of Long (1997), we express a woman’s expected number
of abortions under the negative binomial model as

µ̃ = veXβ ,

where it follows from the assumptions about v that

E(µ̃) = E(v)eXβ = eXβ = µ = F (Xβ).

The negative binomial and Poisson regression models have the same mean structure,
resulting in identical decomposition equations. However, coefficients and standard errors
from a negative binomial model will differ from those of a similarly specified Poisson
regression model when α > 0.

An Example using the offset Option

We have used the offset option in a negative binomial regression model for the example
decomposition below. The offset effectively adjusts the model’s linear predictor so that
covariate effects can be interpreted as changes in the log rate as opposed to changes in

6. The standard Poisson model assumption equates the mean to the variance, i.e., µ = E(Y ) =
var(Y ) = eXβ . Including a frailty term introduces a component of variance, thereby permitting the
variance in Y to exceed the mean. Thus, the resulting model handles the potential overdispersion, or
extra-Poisson variation in count data.
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the log count.7 If the offset is specified, then the expected abortion rate for a woman is

λ = eXβ ,

and the expected number of abortions for that woman is µ = λR, where R is the expo-
sure to the risk of abortion (i.e., the number of pregnancies reported by that woman).
In this case, logR is included as an offset in the count model to yield the predicted log
abortion rate for that woman.8

In the case of a Poisson or negative binomial regression model with an offset term,
the decomposition pertains to a difference in aggregate group rates as opposed to a
difference in average counts. We define the overall (or central) rate in group j in the
usual demographic sense as the number of occurrences (total number of abortions)
divided by total exposure to risk (total number of pregnancies), or

λj =

∑
Yj∑
Rj

=
Y j

Rj

=

∑
F (Xjβj + logRj)∑

Rj
= F (Xjβj + logRj)/Rj .

The decomposition equations for count models—with or without offset terms—can then
be expressed in a unified manner as9

Y A/RA − Y B/RB = F (XAβA + logRA)/RA − F (XBβB + logRB)/RB . (11)

We match each group’s offset vector to their respective X matrix in the decomposition.
Thus, with group B as the referent, the characteristics component is

E = F (XAβA + logRA)/RA − F (XBβA + logRB)/RB

and the coefficients component is

C = F (XBβA + logRB)/RB − F (XBβB + logRB)/RB .

It can be shown that the decomposition weights W∆Xk
and W∆βk

for count models with
offset terms are identical in form to those in Eq. 2 and Eq. 3

As an illustration we utilize a sample of women from the NLSY and decompose the
difference in abortion rates for women who were raised in conservative protestant fami-
lies (consprot=1) and those from other religious backgrounds (consprot=0), including
those with no particular religious upbringing.10 The empirical abortion rates are 10.6
per 100 pregnancies among Conservative Protestants and 14.1 per 100 pregnancies for
those from other backgrounds, yield a difference of 3.4 abortions per 100 pregnancies.
The decomposition results below are scaled to reflect the impact of differences in char-
acteristics and effects on the abortion rate per 100 pregnancies.

7. The offset option is available only for the Poisson and negative binomial models.
8. The offset must be entered as the logged exposure as mvdcmp does not accept the “exposure” option

at this time.
9. The offset term is a N × 1 vector of 0’s for a model without an offset. That is logR = 0, hence

R = R = 1, and λ = µ. Future versions of mvdcmp may offer alternative treatments of the offset term.
10. We have excluded women who were never pregnant, and therefore never at risk for an abortion.
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. use nabort, clear

. mvdcmp consprot, reverse scale(100) : nbreg nabort medu adjinc south urban profam

> books, offset(lognpreg)

Decomposition Results Number of obs = 2807

-----------------------------------------------------------------------------------

High outcome group: consprot==0 --- Low outcome group: consprot==1

-----------------------------------------------------------------------------------

nabort| Coef. Std. Err. z P>|z| [95% Conf. Interval] Pct.

-----------+-----------------------------------------------------------------------

E| 1.2755 .62229 2.05 0.040 .05576 2.4952 35.839

C| 2.2834 .99509 2.29 0.022 .33301 4.2338 64.161

-----------+-----------------------------------------------------------------------

R| 3.5588 .81778 4.35 0.000 1.956 5.1617

Due to Difference in Characteristics (E)

-----------------------------------------------------------------------------------

nabort | Coef. Std. Err. z P>|z| [95% Conf. Interval] Pct.

-----------+-----------------------------------------------------------------------

medu | 1.1296 .28405 3.98 0.000 .57285 1.6863 31.74

adjinc | -.067618 .23457 -0.29 0.773 -.52738 .39215 -1.9

south | .3378 .5004 0.68 0.500 -.64298 1.3186 9.4918

urban | .098114 .038851 2.53 0.012 .021967 .17426 2.7569

profam | .35992 .084695 4.25 0.000 .19392 .52592 10.113

books | -.58235 .2222 -2.62 0.009 -1.0179 -.14683 -16.363

-----------------------------------------------------------------------------------

Due to Difference in Coefficients (C)

-----------------------------------------------------------------------------------

nabort | Coef. Std. Err. z P>|z| [95% Conf. Interval] Pct.

-----------+-----------------------------------------------------------------------

medu | .35006 2.7741 0.13 0.900 -5.0872 5.7873 9.8363

adjinc | -.089086 .67821 -0.13 0.895 -1.4184 1.2402 -2.5032

south | 2.2287 .8682 2.57 0.010 .52703 3.9304 62.624

urban | -.11297 1.1809 -0.10 0.924 -2.4275 2.2016 -3.1742

profam | 1.722 2.7402 0.63 0.530 -3.6487 7.0927 48.388

books | -3.6944 1.4111 -2.62 0.009 -6.4601 -.92859 -103.81

_cons | 1.879 4.4345 0.42 0.672 -6.8126 10.571 52.798

-----------------------------------------------------------------------------------

We include various measures of socioeconomic background including: family income
(adjinc), respondent’s mother’s education (medu), and a 0–3 scale of presence of books,
magazines, or newspapers (books) in the home during adolescence. We also include a
pro-family attitude scale (profam) constructed as the sum of several NLSY survey items,
as well as dummy variables for urban (urban) and southern (south) residence. Here
we find that 39.6% of the religious background differential in abortion rates can be at-
tributed to differences in characteristics, in particular religious background differences
in mother’s education, urban residence, “pro-family” attitudes and presence of books
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magazines or newspapers. The contribution due to the difference in the effects of south-
ern residence (south) and reading materials (books) is also significant, suggesting a
differential salience of regional context and cultural capital on behavioral outcomes.

3 Discussion

Decomposition techniques have a long history in social science research and their popu-
larity is growing partly as a result of the increasing availability of user-friendly computer
routines. We have developed a general-purpose decomposition routine that incorporates
a number of recent contributions to overcome various problems involving the ordering
of variables entered into the decomposition (i.e., the problem of path dependence) and
the sensitivity of the results of the coefficient portion of the decomposition to the choice
of the reference category when regression models include dummy variables (i.e., the
identification problem). This work extends existing Stata modules in important ways
as a result of these refinements and extensions. The mvdcmp module does not provide
the full range of models and decomposition strategies provided by nldecompose (Sin-
ning, Hahn, and Bauer 2008), however it provides detailed decomposition results and
standard errors for an important subset of those models. It should also be mentioned
that mvdcmp provides a single type of decomposition referred to as the standard or two-
component decomposition. Although it provides for a reverse decomposition, it could be
made more flexible by offering alternative options, such as the three-way decomposition
described by Daymont and Andrisani (1984).

The programming tasks of the normalization procedure were considerably less daunt-
ing due to the availability of Ben Jann’s (2005) devcon utility. The options for including
normalization were inspired by oaxaca (Jann 2008) and the fairlie (Jann 2006) mod-
ule provided the motivation to include covariate grouping. Further work remains to be
done to include normalized interaction terms as in oaxaca. We include the same suite
of count data models that are available in gdecomp (Bartus 2006), however we have
added options for model weights and offsets in these models. It should be straight-
forward to include options for robust standard errors and survey adjustments. Future
work will consider methods to decompose the estimated unobserved heterogeneity from
negative binomial models. We have also extended these methods to other settings and
have working versions of modules for the multivariate decomposition of discrete and
continuous time hazard models as described by Powers and Yun (2009).
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