1. Given the following variance-covariance matrix for a repeated measures design with 3 levels of the within factor, show how you would find epsilon using the Box/Geisser-Greenhouse formula

Correlations

		SCORE 1	SCORE 2	SCORE 3
SCORE_1	Pearson Correlation	1.000	619^{*}	666*
	Sig. (2-tailed)		. 000	. 000
	Sum of Squares and Cross-products	312.222	153.222	184.444
	Covariance	8.921	4.378	5.270
	N	36	36	36
SCORE_2	Pearson Correlation	.619*	1.000	. 152
	Sig. (2-tailed)	. 000		. 375
	Sum of Squares and Cross-products	153.222	196.222	33.444
	Covariance	4.378	5.606	. 956
	N	36	36	36
SCORE_3	Pearson Correlation	. 666^{*}	152	1.000
	Sig. (2-tailed)	. 000	. 375	
	Sum of Squares and	184.444	33.444	245.639
	Cross-products			
	Covariance N	$\begin{array}{r}5.270 \\ 36 \\ \hline\end{array}$	$\begin{array}{r}.956 \\ 36 \\ \hline\end{array}$	$\begin{array}{r}7.018 \\ \hline 36 \\ \hline\end{array}$

**. Correlation is significant at the 0.01 level (2 -tailed).

The answer without conducting any arithmetic would be:
s_{ij} mean of the diagonals is $(8.921+5.606+7.018) / 3$
s mean of the entire matrix is $(8.921+4.378+5.270+4.378+5.606+.956+5.27+.956+7.018) / 9$ $\sum \mathrm{s}_{\mathrm{jk}}{ }^{2}$ sum of all squared entries is

$$
8.921^{2}+4.378^{2}+5.270^{2}+4.378^{2}+5.606^{2}+.956^{2}+5.27^{2}+.956^{2}+7.018^{2}
$$

$\sum \mathrm{s}^{2}{ }_{j}$ sum of squared row totals is

$$
\begin{aligned}
& {[(8.921+4.378+5.270) / 3]^{2}+[(4.378+5.606-+.956) / 3]^{2}+[(5.27+.956+7.018) / 3]^{2}} \\
& \varepsilon=\left[3^{2}\left(s_{\mathrm{ij}}-\mathrm{s}\right)^{2}\right] /\left[(3-1)\left(\sum \mathrm{s}_{\mathrm{jk}}{ }^{2}-(2)(3) \sum \mathrm{s}^{2}{ }_{\mathrm{j}}+3^{2} \mathrm{~s}^{2}\right)\right]
\end{aligned}
$$

