Lab A
 Descriptive Statistics

\mathcal{A} large group of grade school teachers throughout the US are asked to provide information regarding the television vie wing habits of their students. Each of you have been assigned data from a 12-student classroom.
\mathcal{N} ote: $\mathcal{N}=10$ in this example ; Your lab fas $\mathcal{N}=12$

25252418261940705026

For questions 1.6 treat your data as a population.

1. What is the mean? $(25+25+24+18+26+19+40+70+50+26) / 10=32.30$
2. What is the sum of x ? $(25+25+24+18+26+19+40+70+50+26)=323$
3. What is the sum of x-squared? $\left(25^{2}+25^{2}+24^{2}+18^{2}+26^{2}+19^{2}+40^{2}+70^{2}+50^{2}+26^{2}\right)=12863$
4. What is the population variance? $\left[\left(12863-323^{2} / 10\right)\right] / 10=243.01$
5. What score reflects the 90 th percentile? (\mathcal{N} ote: Your lab as 97\%)

$$
+1.28(\sqrt{243.01})+32.3=52.25
$$

6. What percentage of scores fall between the me an and a score of 30 ?

First find the z-score: $z=(30-32.30) / \sqrt{243.01}=-.1475$
$z=-.1475$ corresponds to .0596 of the curve between the me an and z.

For question 7-9 treat your data as a sample.
7. Find the 95% confidence interval around the mean.

For the confidence interval, you need s,

$$
\text { so }\left\{\left[\left(12863-323^{2}\right) / 10\right] / 9\right\}^{.5}=16.43
$$

$32.30 \pm(16.43 / \sqrt{10}) 2.262 \quad 20.55 \leq \mu \leq 44.05$
8. Discuss what this interval means.

Lab B
 Chi-square

Problem a:

Law schoolstudents and other students at a university are asked to complete a survey. The researcher knows the proportion of lawstudents at the university I p (Lawyers)]. She wonders if the number of [awyers who complete the survey [Obs(Lawyers)] versus other students [\mathcal{N} O6s(Lawyers) is what one would expect given this \mathcal{N} and proportion of lawstudents. Ulse the chisquare goodness of fit test to assess whether observations are consistent or inconsistent with expectations. In your response to the questions, use the information for Problem a in the data set number assigned to you by the teaching assistant.

$$
\begin{aligned}
p(\text { Lawyers })=.35 \quad & \text { O6s }(\text { Lawyers })=27 \quad \mathcal{N}=60 \\
& \text { Exp }(\text { Lawyers })=.35(60)=21 \\
& \text { O6s (otherstudents) }=60-27=33 \\
& \text { Exp(otferstudents })=60-21 \text { or }(1-.35)(60)=39
\end{aligned}
$$

$\sum(O-\mathcal{E})^{2} / \mathcal{E} \quad(27-21)^{2} / 21+(33.39)^{2} / 39=2.637$ ns for $1 d f$

Problem 6:

Another researcher sends out surveys to students in the engine ering school and the law school. She counts the number of survey-completers fromeach school who are male versus female, and wonders whether gender and school are related. In your response to the questions, use the information for Problem 6 in the data set number assigned to youby the teaching assistant.

O6s (Fem-Law)	O6s (Mal-Law)
20	9
Obs(Fem-Eng)	Obs (Fem-Eng)
16	14

Expected Value for $=\left(36^{*} 29\right) / 59$	$=$	17.69
Expected Value for $=\left(30^{*} 36\right) / 59$	$=$	18.31
Expected Value for $=\left(29^{*} 23\right) / 59$	$=$	11.31
Expected Value for $=\left(23^{*} 30\right) / 59$	$=$	11.69

$\frac{(20-17.69)^{2}}{17.69}+\frac{(16-18.31)^{2}}{18.31}+\frac{(9-11.31)^{2}}{11.31}+\frac{(14-11.69)^{2}}{11.69}$ $=1.52 \mathrm{~ns}$ for 1 df

Lab C

One-way Between Groups ANOVA

One-way between groups $\mathcal{A N} \mathcal{V} \mathcal{A}$ also can be computed with the heuristic formula:
$\sum S^{2}=210+185.7+202.27+139.9+346.27=1084.14$
$S_{x}^{2}=\frac{\sum x^{2} \cdot\left(\sum x\right)^{2} / n_{x}}{n_{x}-1}$
$\underline{22^{2}+21.33^{2}+21.083^{2}+18.08^{2}+39.5^{2}-(22+21.33+21.083+18.08+39.5)^{2} / 5}$
5-1
$=73.50$
$\mathcal{F}=\frac{n S_{x}^{2}}{\underline{\sum S^{2}} / \mathcal{g}} \quad \frac{12(73.50)}{1084.14 / 5} \quad=\frac{882}{216.83} \quad=4.07$

Lab D
 Tests Subsequent to ANOVA

GROUP ONE	13	3	39	19	3	3	5	13	0	28	7	11	144	
GROUP TWO	14	7	39	29	42	32	9	21	13	40	38	47	331	
GROUP THREE	5	43	1	13	5	2	12	42	27	46	38	28	262	
GROUP FOUR	38	62	23	60	37	68	44	38	42	42	30	35	519	
GROUP FIVE	47	53	68	21	53	42	49	39	37	32	42	30	513	
Source		SS					f			MS		F		p
Total		195	40.9				9							
Between			99.9				4			2199				
C2			1.3				1			1901				01
Within		107	41.0				5			195				

\mathcal{N} ote: This is $\mathfrak{N O T}$ one of the researcher's hypotheses on your lab, and it is $\mathfrak{N O T}$ orthogonal to them (i.e., comparing the two highest dosages with the smallest dosage). You should think about what the coefficients for your lab should be.

Comparing group 2 with the ave rage of groups 4 and 5

Group1 Group 2 Group3 Group 4 Group5

\mathcal{T}	144	331	262	519	513
a	0	-2	0	+1	+1

$$
\frac{[-2(331)+519+513]^{2}}{12\left[(-2)^{2}+1^{2}+1^{2}\right]}=\frac{370^{2}}{72}=1901.39
$$

Lab E
 2-way between groups ANOVA

B1					
A1	3636	59	5656	60	39
A2	4960	36	5661	53	55
A3	6864	83	5959	58	84
	B1	B2			
A1	$\mathcal{T}=342$	$\mathcal{T}=230$			572
	$n=7$	$n=7$			
A2	$\mathcal{T}=370$	$\mathcal{T}=218$			588
	$n=7$	$n=7$			
A3	$\mathcal{T}=475$	$\mathcal{T}=371$			846
	$n=7$	$n=7$			
	1187		819		

B2

A1	35	45	21	37	39	31	22
A2	26	25	34	48	22	29	34
A3	44	50	46	65	69	55	42

A1 $\quad \mathcal{T}=342$
$\mathcal{T}=230$
$n=7$
$\mathcal{T}=218$
$\mathcal{T}=371$

819
$\mathcal{G T}=2006$
$\sum x^{2}=106040$
$\mathcal{N}=42$
$C \mathcal{F}=2006^{2} / 42=95810.38$

SSTotal $=\sum \chi^{2}-\mathcal{C F} \quad=$ SSTotal $=106040-95810.38$
$\mathcal{S S R} \mathcal{R o w}=\left(\mathcal{T}^{2}{ }_{r o w 1}+\mathcal{T}^{2}{ }_{\text {row } 2}+\mathcal{T}^{2}{ }_{r o w 3}\right) / 6 n-\mathcal{C F}=\left(572^{2}+588^{2}+846^{2}\right) / 14-95810.38$

SSColumn $=\left(\mathcal{T}^{2}{ }_{c o l 1}+\mathcal{T}^{2}{ }_{c o l 2}\right) / a n-\mathcal{C F}=\left(1187^{2}+819^{2}\right) / 21-95810.38$
$\mathcal{S S R X C}=\left(\mathcal{T}^{2}{ }_{a 161}+\mathcal{T}^{2}{ }_{a 261}+\mathcal{T}^{2}{ }_{a 261}+\mathcal{T}^{2}{ }_{a 162}+\mathcal{T}^{2}{ }_{a 262}+\mathcal{T}^{2}{ }_{a 262}\right) / n-\mathcal{S S}$ row-S Sco(umn-CF$=$

$$
\left(342^{2}+370^{2}+475^{2}+230^{2}+218^{2}+371^{2}\right) / 7-3378.48-3224.38-95810.38
$$

S switfin $=$ SS Total-S S Row-S S cotumn-S SRXC

Source	SS	df	MS	p	
Total	10229.62	$\mathrm{~N}-1=41$			
Row (AROUS)	3378.48	$\mathrm{r}-1=2$	1689.24	17.22	$<.01$
Column (GEND)	3224.38	$\mathrm{c}-1=1$	3224.38	32.86	$<.01$
RxC (AROXGEN)	94.47	$(r-1)(\mathrm{c}-1)=2$	47.24	0.48	ns
Within	3532.29	$\mathrm{~N}-\mathrm{rc}=36$	98.12		

Lab F
 SxA 1way repeated measures ANOVA

	A1	A2	A3		
S1	16	20	34	70	$\mathrm{GT}=444$
S2	1	4	10	15	$\sum \mathrm{x}^{2}=10810$
S3	11	24	30	25	$\mathrm{~N}=24$
S4	8	5	12	64	$\mathrm{CF}=444^{2} / 24=8214$
S5	15	23	26	17	46
S6	18	19	42	46	
S7	29	34	25		
S8	6	15	196		
T	104	8	144	8	
n	8				

Computed as a within Ss design

Total $=\sum x^{2}-C \mathcal{F}=10810-8214$
Between $=\left(S^{2}{ }_{1}+S^{2}{ }_{2}+S^{2}{ }_{3}+\mathcal{S}^{2}{ }_{4}+S^{2}{ }_{5}+S^{2}{ }_{6}+S^{2}{ }_{7}+S^{2}{ }_{8}\right) / a \cdot C \mathcal{F}$

$$
\left(70^{2}+15^{2}+65^{2}+25^{2}+64^{2}+54^{2}+105^{2}+46^{2}\right) / 3-8214
$$

$W_{\text {Within }}=\mathcal{T}$ otal-Between

$$
\begin{aligned}
& \mathcal{A}=\left(\mathcal{A}^{2}{ }_{1}+\mathcal{A}_{2}^{2}+\mathfrak{A}^{2}{ }_{3}\right) / n \cdot \mathcal{C F}=\left(104^{2}+144^{2}+196^{2}\right) / \mathcal{B} \cdot \mathcal{S} 214 \\
& \text { s×a }(\text { error })=\text { Witfin } \mathfrak{A}
\end{aligned}
$$

Source	SS	df	MS	p	
TOTAL	2596	$\mathrm{~N}-1=23$			
BETWEEN SS	1828.67	$\mathrm{~S}-1=7$	261.24	15.54	
WITHIN	767.33				
A (weekday)	532	$\mathrm{a}-1=2$	266	15.82	$<.01$
SXA (error)	235.33	$(\mathrm{a}-1)(\mathrm{s}-1)=14$	16.81		

Computed as a between Ss design

Total $=\sum x^{2}-C \mathcal{F}=10810-8214$
Between $=\left(\mathcal{T}^{2}{ }_{1}+\mathcal{T}^{2}{ }_{2}+\mathcal{T}^{2}{ }_{3}\right) / n \cdot \mathcal{C F}=\left(104^{2}+144^{2}+196^{2}\right) / 8-8214$

Witfin $=$ Total $\cdot \mathcal{B e t w e e n}$

Source	SS	df	MS	F	
TOTAL	2596	$\mathrm{~N}-1=23$			
Between (weekday)	532	$\mathrm{a}-1=2$	266	2.71	ns
Within	2064	$\mathrm{~N}-\mathrm{a}=21$	98.29		

Lab G
 S/AxB Mixed-Model ANOVA Design

		$\mathbf{A 1}$						$\mathbf{A 2}$						
B		$\mathbf{1}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$		\mathbf{B}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$		
SUBJ	1	32	56	67	79	82	$\mathbf{3 1 6}$	SUBJ	1	18	27	38	30	55
$\mathbf{1 6 8}$														
SUBJ	2	42	41	40	57	76	$\mathbf{2 5 6}$	SUBJ	2	44	39	41	51	42
$\mathbf{2 1 7}$														
SUBJ	3	29	51	48	55	71	$\mathbf{2 5 4}$	SUBJ	3	15	24	44	61	48
$\mathbf{1 9 2}$														
SUBJ	4	39	48	63	52	56	$\mathbf{2 5 8}$	SUBJ	4	14	25	38	30	44
$\mathbf{1 5 1}$														
SUBJ	5	27	31	34	59	65	$\mathbf{2 1 6}$	SUBJ	5	33	34	39	49	37
SUBJ	6	41	62	63	73	69	$\mathbf{3 0 8}$	SUBJ	6	37	52	51	42	34
$\mathbf{2 1 6}$														

Subt abl e		AxB
A1	A2	
B1	210	161
B2	289	201
B3	315	251
B4	375	263
B5	419	260

GT=2744 $\mathrm{N}=60$
$\sum x^{2}=140184$
$C F=2744^{2} / 60$

Main Effects

$\begin{array}{lllllll}\text { A } & 1608 & 1136 & & & \\ \text { B } & 371 & 490 & 566 & 638 & 679\end{array}$
$\begin{array}{llllll}\text { B } & 371 & 490 & 566 & 638 & 679\end{array}$

Total $=\sum x^{2}-\mathcal{C F}=140184-125492.27$
$\mathcal{B e t w e e n}=\left(\mathcal{S}_{1} / \mathcal{A}_{1}{ }^{2}+\mathcal{S}_{1} / \mathcal{A}_{2}{ }^{2}+\ldots \mathcal{S}_{6} / \mathcal{A}_{2}{ }^{2}\right) / 6 \cdot \mathcal{C F}=\left(316^{2}+168^{2}+\ldots 216^{2}\right) / 5-125492.27$
$\mathcal{A}=\left(\mathcal{A}^{2}{ }_{1}+\mathcal{A}^{2}{ }_{2}\right) / n b-\mathcal{C F}=\left(1608^{2}+1136^{2}\right) / 30-125492.27$
$S / \mathcal{A}($ error $\mathcal{B e}$ tween $n)=\mathcal{B e t w e e n - S S A}$

Within $=\mathcal{T o t a l}-\mathcal{B e}$ tween
$\mathcal{B}=\left(\mathcal{B}^{2}{ }_{1}+\mathcal{B}^{2}{ }_{2}+\mathcal{B}^{2}{ }_{3}+\mathcal{B}^{2}{ }_{4}+\mathcal{B}^{2}{ }_{5}\right) / n a \cdot \mathcal{C F}=\left(371^{2}+490^{2}+566^{2}+638^{2}+679^{2}\right) / 12-125492.27$
$\mathcal{A X B} \quad\left(\mathcal{A}_{1} \mathcal{B}^{2}{ }_{1}+\mathcal{A}_{2} \mathcal{B}^{2}{ }_{1}+\ldots.\right) / n-\mathcal{C F} \cdot S S \mathcal{A}-S S \mathcal{B}=$ $\left(210^{2}+161^{2} \ldots 260^{2}\right) / 6 \cdot 125492.27 \cdot 3713.07 \cdot 5022.90$
$S / \mathcal{A} \not \subset \mathcal{B}=\mathcal{W}$ it $\operatorname{fin}-\mathcal{B} \cdot \mathcal{A} \not \subset \mathcal{B}$

Source	SS	df	MS		F	p
TOTAL	14691.73		$N-1=59$			
BETWEEN	5805.73					
A (gender)	3713.07		$a-1=1$	3713.07	17.74	$p<.01$
S/A	2092.66		$a(s-1)=10$	209.27		
WITHIN	8886					
B (slide)	5022.90		$b-1=4$	1255.73	15.52	$\mathrm{p}<.01$
AXB (g* ${ }^{\text {) }}$	625.76		$(a-1)(b-1)=4$	156.44	1.93	ns
$S / A x B$	3237.34		$a(s-1)(b-1)=40$	80.93		

Lab H
 Simple Regression

\mathcal{A} researcher examines the relation betwe en personality and volunteerism. Your data represent scores on a dispositionalempathy scale for 12 college students (the predictor variable), as well as the number of hours per year spent volunteering (variable y). In your response to the questions, use the data set assigned to you by the teaching assistant.

\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{x}^{2}	$\boldsymbol{y}^{\mathbf{2}}$	$\boldsymbol{x y}$
28	30	784	900	840
28	32	784	1024	896
28	34	784	1156	952
29	32	841	1024	928
25	27	625	729	675
30	29	900	841	870
40	27	1600	729	1080
24	25	576	625	600
23	25	529	625	575
27	30	729	900	810
26	39	676	1521	1014
24	25	576	625	600
332	355	9404	10699	9840

Pe arson Product Moment Correlation

$\frac{\mathcal{N} \sum x y-\sum x \sum y}{\left\{\left[\mathcal{N} \sum x^{2}-\left(\sum x\right)^{2}\right]\left[\mathcal{N} \sum y^{2}-\left(\sum y\right)^{2}\right]\right\}^{5}}$	
$220 /\{2624(2363)]\}^{5}=.0884$	$\frac{12(9840)-332(355)}{\left\{\left[12(9404)-332^{2}\right]\left[12(10699)-355^{2}\right]\right\}^{.5}}$

Source	SS	df	MS	F	p
TOTAL	10699-355 ${ }^{2} / 12$.	$\mathrm{N}-1=11$			
Regression	[10699-355 $\left.{ }^{2} / 12\right]\left(.0884^{2}\right)$	$\mathrm{k}=1$	1.5388	. 07876	ns
Residual	[10699-355 $\left.{ }^{2} / 12\right]\left(1-.0884^{2}\right)$	$\mathrm{N}-\mathrm{k}-1=10$	19.5378		

Standard error of the estimate
$\left\{\left[10699-355^{2} / 12\right]\left(1-.0884^{2}\right)\right\} .5 \quad$ (or the square root of MS residual) $=4.4202$

```
95% confidence interval
.0886 \pm 1.96(1/\sqrt{}{}9 -.565\leqZ \leq.742
    translating 6ack to rmetric: -. 51 \leqr\leq.63
```

regression equation.
$6=220 / 2624=.0838 \quad a=355 / 12 \cdot .0838(332 / 12)=27.26$
predicted $y=27.26+.0838 x$

Create a bivariate plot of the data, and drawthe regression line from \# 6.

Lab I

Standard Multiple Regression

A researcher was interested in predicting aggressive behavior among ten male adolescents from their dispositional aggressiveness as well as the number of hours they viewed television violence each week. The researcher wished to assess the unique contribution of disposition and of television, as well as assessing how well the two factors predicted aggressive behavior. In answering the following questions, use the data set assigned to you by the teaching assistant.

Note that you have been provided with summary information this time, rather than the raw data. Specifically, you need the first line of information, which is labeled StandardMR

DataSet 175	b1	b2	a	sb1	sb2	R	
StandardMR	0.50672808	0.68606933	8.80198433	0.65743614	0.66400936	0.50	
HierarchMR	Step 1b1	Step1a	Step1R	Step1sb1			
		0.71000788	9.97084318	0.37015366	0.62999641		
DataSet	175	tb1	tb2		F-R12y		
		0.77076395	1.03322238				
		Step1tb1		F-Step1	F-Step2	F-change	
		1.12700305		1.27013588	1.17409928	1.06736701	

1. In tabular format, report the coefficients, standard errors of the bs, t-tests on the bs, and significance of the bs.

Coefficients	std error	significance	
8.802	.657	$.507 / .657$	$=.772$

2. Test the significance of multiple R (R12y)

$$
\begin{aligned}
& \mathrm{F}_{(2,7)}=\left[.5012^{2} / 2\right] /\left[1-.5012^{2}\right] /[10-2-1]=.1256 / .107=1.174 \\
& \mathrm{~F}_{(2,7)}=1.174, \mathrm{~ns}
\end{aligned}
$$

3. Interpret the findings of the analysis.

Lab J

Hierarchical Multiple Regression
A researcher believes that viewing television violence predicts aggressive behavior among ten adolescent males, above and beyond their dispositional aggressiveness. He enters dispositional aggressiveness on step one, then adds violent television viewing on step two. In answering the following questions, use the data set assigned to you by the teaching assistant.

Note that you again have been provided with summary information, rather than the raw data. Note also that your summary information is the same as for Lab H, so you already should have accomplished some of the calculations. The first line of information, labeled StandardMR, provides the information relevant to the second step. The second line of information, labeled HierarchMR, provides information relevant to the first step and to the hierarchical test.

DataSet 175	b1	b2	a	sb1	sb2 R12y
StandardMR	0.50672808	0.68606933	8.80198433	0.65743614	0.664009360 .50119121
HierarchMR	Step 1b1	Step1a	Step1R	Step1sb1	
	0.71000788	9.97084318	0.37015366	0.62999641	
DataSet 175	tb1	tb2		F-R12y	
	0.77076395	1.03322238		1.17409928	
	Step1tb1		F-Step1	F-Step2	F-change
	1.12700305		1.27013588	1.17409928	1.06736701

1. In tabular format, report the coefficients, standard errors of the bs, t-tests on the bs, and significance of the bs for each step.

Step	One Coefficients	std error	t sis	significance
9.971				
	. 710	. 63	. $71 / .63=1.127$	ns
Step Two				
	Coefficients	std error	t sis	significance
8.802				
	. 507	. 657	. $507 / .657=.772$	ns
	. 686	. 664	.686/.664 = 1.033	3 ns

2. Test the significance of multiple R at step one (R1y) and step two (R12y)

Step One

$$
\begin{aligned}
& \mathrm{F}_{(1,8)}=\left[.3702^{2} / 1\right] /\left[1-.3702^{2}\right] /[10-1-1]=.3702^{2} / .108=1.269 \\
& \mathrm{~F}_{(1,8)}=1.269, \mathrm{~ns}
\end{aligned}
$$

Step Two

$$
\begin{aligned}
& \mathrm{F}_{(2,7)}=\left[.5012^{2} / 2\right] /\left[1-.5012^{2}\right] /[10-2-1]=.1256 / .107=1.174 \\
& \mathrm{~F}_{(2,7)}=1.174, \mathrm{~ns}
\end{aligned}
$$

3. Test the change in R^{2}

$$
\begin{aligned}
& \mathrm{F} \Delta \mathrm{R}^{2}=\left\{\left[.5012^{2}-.3702^{2}\right] / 1\right\} /\left\{\left[1-.5012^{2}\right] /[10-2-1]\right\}=.11415 / .107=1.067 \\
& \mathrm{~F}_{(1,7} \Delta \mathrm{R}^{2}=1.067, \mathrm{~ns}
\end{aligned}
$$

4. Interpret the findings of the analysis.
