Seawater Chemistry and Chemical Oceanography

The Universal Solvent

- Polarity of molecule makes water very effective at "hydrating" even weakly charged ions

Sphere of Hydration

- Polarity of water molecules allows interactions with solute molecules
 - Example NaCl
 - Ionic bond
 - Water's polarity can break this bond and retain the ions that result in solution
- Water is the universal solvent
Seawater has everything dissolved in it. 13ppm Au \times 1.12e21 kg H$_2$O = 1.5e10 kg Au @ $43,052/\text{kg}* = $646 trillion

*Gold prices as of 5 Oct 2010

Seawater Salinity

- **Salinity** – the amount ions dissolved in water, including dissolved gases
 - Not including
 - Suspended material (floating grains of clay, for instance)
 - Sediment settled from water
- Average ocean salinity
 - 3.5%
 - 35%
 - 35 g/kg
 - 35 permil
Changing Salinity

- **Sources**
 - Runoff
 - Hydrothermal Vents
 - Volcanoes
- **Sinks**
 - Sea Spray
 - Biology
 - Hydrothermal Vents
 - Chemical Precipitation

Other Seawater Constituents

- **Gases**
 - CO₂
 - O₂
 - N₂
 - Ar
- **Important Trace Constituents**
 - I₂
 - PO₄⁻³
 - NO₃⁻¹
 - Fe

Measuring Salinity

- **Salinity is measured as conductivity of the water**
 - Since the dissolved constituents are ions, they facilitate the conductance of an electric current
- **Units**
 - psu – practical salinity units
 - 1 psu = 1 permil
Salinity Variations

Freshwater – 0.16 psu
Saltwater – 35 psu average

Hypersaline water – 40 psu and greater
- Semi-enclosed seas
- Red Sea, Mediterranean Sea

Salinity values can be any mixture of these values

Brackish – between 0 psu and 35 psu
- River estuaries
- Bays
Cause of Salinity Variation

• Decrease Salinity
 – Precipitation (H₂O)
 – Runoff
 – Melting Ice • Increase Salinity
 – Evaporation
 – Ice formation

Salinity Profiles

• Halocline
 – Rapidly changing salinity
• Surface processes control salinity

Salinity and Density

• What determines the salinity of deep water?
 – We need to ask how the water gets there.
Seawater Density

- \(\rho = f(T, S) \)
- \(\frac{d\rho}{dT} < 0 \)
- \(\frac{d\rho}{dS} > 0 \)
- Density units
 - Pure water
 - 1000 g/L
 - \(\sigma = \rho - 1000 \)

Salinity and Temperature

- 1022-1030 g/L
Salinity and Temperature

- Used to characterize seawater
- Representative of surface processes and thus region of origin

Depth Profiles

- Pycnocline
 - Rapid change in density
- Mixed layer
 - Above thermocline

Acidity and Alkalinity

- pH of oceans = 8.2
 - $10^{-8.2}$ mol H⁺/L
- Carbonate buffering
Changing Alkalinity

- Oceans are absorbing more CO₂
- This mitigates CO₂’s effect on climate change
- Ocean pH is lowered

![Map showing ocean pH changes](image)

Chemical Oceanography

- Use of chemicals to track ocean circulation
 - Natural chemicals
 - ¹⁴C
 - Nitrates
 - Phosphates
 - Anthropogenic chemicals
 - CFC’s
 - ¹⁴C (from nuclear bombs)
 - ³H (from nuclear bombs)
Chem O – a ‘dye’ experiment

The ‘dye’ doesn’t always need to be visible – a change in salinity, a measurable solute or nutrient, a man-made chemical can all help in tracing currents.

Chemical Oceanography

• Use of chemicals to track ocean circulation
 – Some circulation is too subtle to measure directly
 – GeoSecs (1970’s)
 – WOCE (1990’s)

GeoSECS

• Geochemical Ocean Section Study
 – 1973 to 1976
 – International Decade of Ocean Exploration
 – Application of geochemical and hydrographic data to study circulation and mixing process in the ocean
 • Atlantic – R.V. Knorr (WHOI)
 • Pacific – R.V. Melville (Scripps)
 • Atlantic – F.S. Meteor (Germany)
 • Pacific and Indian – R.V. Hakuho-Maru (Japan)
GeoSECS

- Measured:
 - CTD
 - Radioactive tracers
 - Stable isotope tracers
 - Dissolved salts
 - Ba
 - Sr
 - Mg
 - Alkalinity

GeoSECS

- Sparse data, but invaluable to this day
- Southern Hemisphere not as well represented in data

WOCE

- World Ocean Chemistry Experiment
 - 1990 to 2002
 - World Climate Research Program
 - 30 nations participated
WOCE

• World Ocean Chemistry Experiment
 – More coverage geographically
Nitrates and Phosphates

- **Nutrients**

Seasonal Productivity Variations

- Nitrates used in productive seasons
- Upwelling and currents

GeoSECS and WOCE

- Both expeditions left a legacy of important discoveries.
- Classification of ocean transport and circulation that is nearly impossible to measure directly
 - Dye experiments – use of anthropogenic chemicals to trace movement of deep ocean
 - Thermohaline circulation
 - Density driven – salt and temperature
Thermohaline Circulation

- Thermo... – temperature
- ...haline – salt
 - Density-driven flow of surface water to deep ocean and vice versa

Global Conveyor Belt

- ...of heat and carbon

Subtropical Atlantic
Subtropical Atlantic

- Evaporation over isthmus of Panama
- Gulf Stream transport of water poleward

Subtropical Atlantic

- Cold, salty water becomes ‘unstable’ – density is higher than water below it.
Observation of the N. Atlantic Overturn

• Subduction of heat and salt (and carbon) into deep water masses

Observability of Thermohaline Circulation

• Major ocean current system that can’t be measured directly from moving ship
• Use of chemicals dissolved in ocean to “trace” it – passive tracers.

Anthropogenic Tracers

• Man-made chemicals enter the ocean and allow us to trace ocean currents passively
Radiocarbon (14C)

Late 1950’s, early 1960’s

Radiocarbon Bomb Curve
Tritium

- Produced in 1950’s and 1960’s
- 3H half life = 12.32 y
- Demonstration of sinking N. Atlantic waters

Key Concepts

- All chemicals dissolve into the ocean
- Salinity and temperatures are the “currency” of oceanography
- Thermohaline circulation only observable using chemical oceanography
- Other tracers can be used – oil?