Urogenital Development

Intermediate Mesoderm
Interconnective - Urinary and Genital Systems
Recapitulation of Kidney Development
Epithelial-Mesenchymal Interactions
Indifferent Stage of Sexual Differention
Genetic vs. Environmental Factors

Urethra Urethra Urethra Kidneys Kidneys, Ureter, Bladder, Urethra

Kidney Architecture

Renal Cortex:

Renal corpuscle Convoluted tubules

Renal Medulla:

Collecting ducts Loop of Henle

Each Minor calyx drains a tree of collecting ducts within a renal pyramid

Pyramids are separated by columns of cortical tissues called renal columns

The Renal pyramids converge to form the renal papilla

Intermediate Mesoderm

Early Development – 3 successive stages Pronephros, Mesonephros, Metanephros

Pronephros- Most primitive Kidney
Cervical nephrotomes- 5 7pairs of small
hollow balls of epithelium – connected to the
primary nephric duct (pronephric duct)

Non functional in mammals

Transient – nephrotomes degenerates by 24 25 days
Primary nephric duct extends caudally to become the
Mesonephric duct

Mesonephros

Functional embryonic kidney

Mesonephric tubules form in each segment

Cranial to caudal sequence

First 4-6 bud out from the primary nephric duct

Remaining form in the intermediate mesoderm and connect with the Mesonephric duct

Mesonephric tubule differentiates a cup-shaped **Bowman's capsule** that wraps around the **Glomerulus**

Glomerulus is a knot of capillaries

Bowman's capsule and Glomerulus make up the **Renal Corpuscle**Mesonephic tubules connect to Mesonephric duct (Wolffian duct)
Mesonephric kidney is the functional adult kidney of fish and some amphibians

Mesonephric Duct

Initally a solid rod that grows caudally

Diverges from intermediate mesoderm and fuses with the ventrolateral cloacal wall (future bladder)

Mesonephric duct undergoes canalization – transformation from mesenchyme to epithelium

Mesonephros is functional until 10 weeks

Mesonephric Duct regression depends on sex (Genital Development)

Mesonephric is also called the Wolffian duct

Metanephros

Ureteric Bud (Metanephric diverticulum)- outgrowth of the distal mesonephric duct

Metanephric blastema is the mesenchyme surrounding the ureteric bud

Ureteric bud – multiple events of **elongation** and **bifurcation**

Bifurcation results in two ampulla each with its blastema

Ureteric Bud/Metanephric Blastema

Ureteric Bud is induced by surrounding mesenchyme **GDNF** – Glial-Derived Neurotrophic Factor

(metanephric blastema)

C-ret – Tyrosine kinase receptor family (mesonephric duct)

WT-1 - Wilms tumor suppressor gene - controls GDNF

Elongation and Branching is controlled by cross-talk between the metanephric blastema and the tips of the branches

Ureteric buds produce FGF2, BMP7, Wnt11

Metanephric blastema produces Wnt4 and Pax2

Ureteric bud forms the collecting duct system

Metanephric blastema forms the renal tubules (note: mesenchyme to epithelium transition required)

Ureteric Bud Branching

Branching of the Ureteric bud gives developing kidney a lobular appearance, Sulcus separates the lobes

First 4 bifurcations (16 branches) coalesce to form the Renal Pelvis and the Major Calyces

Next 4 bifurcations coalesce to form the Minor Calyces

11 more branches forms 1-3 million collecting tubules

Nephron

Nephron formation

metanephrogenic blastema forms the nephric vesicle that elongates and associates with a glomerulus

The tubules differentiates into the

- 1) Bowman's capsule
- 2) Proximal convoluted tubule
- 3) Loop of Henle
- 4) Distal convoluted tubule

The distal convuluted tubule fuses with the collecting duct.

Renal corpuscle = Bowman's capsule/glomerulus. The nephron is the metanephric excretory unit.

The origin of the Renal corpuscle and tubules is distinct from the collecting duct (Metanephric duct)

Duct systems merge

Renal duct – sequence of differentiation renal corpuscle → proximal tubule → distal tubule

Loop of Henle elongates into the medulla

Late Changes

Branching system becomes larger forming the pelvis and calyces.

Kidneys undergo a cranial shift from the pelvic region to the abdominal region

Kidneys also undergo a lateral displacement that brings them in contact with the developing Adrenal glands that fuse to the cranial pole

Kidneys rotate 90° so that the renal pelvis is facing the midline

Urogenital Sinus

Urogenital sinus forms:

Bladder

Pelvic urethra

Definitive urogenital sinus

Pelvic Urethra Membranous & Urethra
Prostatic Urethra

Definitive Urogenital Penile Urethra Vagina

Sinus

Bladder Formation

The ureter drains into the mesonephric duct that drains into the bladder

The wall of the bladder expands and the mouth of mesonephric duct flares so the mesonephric duct blend into the bladder wall

The mesonephric duct contributes to the formation of the Trigone of the bladder.

The ureter gains a separate connection to the bladder.

The connections of the ureter to the bladder begins lateral to the mesonephric ducts and ends up at a superior position (the mesonephic duct migrates)

Genital System

Develops in conjunction with urinary system

Germ cells migrate from yolk sac to intermediate mesoderm medial to the developing mesonephrose

The Genital ridge forms at the 10th thoracic level medial and ventral to the mesonephrose.

Early development of males and females are similar Indifferent Phase

Gametogenesis

Spermatogenesis, oogenesis

Germ cells originate from yolk sac of embryo (parent)

Migration into genital ridge

Primary sex cords (compact strands of tissue)

Mitosis

Female - ovary, sex cords cells → ovarian follicle

Male - testis, sex cord cells → Sertoli cells of the seminiferous

Sex cord cells are essential for gametogenesis.

Genital Ridge

Supporting cells from the mesonephrose and coelomic epithelium invade the genital ridge and aggregate around the primordial germ cells to form the primary sex cords

Germ cells are required for invasion of supporting cells Supporting cells are required for survival of germ cells Genital ridge enlarges and forms a cortex and medullathese regions have different fates in males and females

After 6 weeks- males and females diverge- prior to this is called the Indifferent phase of genital development

Mullerian Duct

During week 6- paramesonephric duct (Mullerian duct) forms lateral to the mesonephric duct

Mullerian ducts is an invagination of coelomic epithelium
Cranially at the 3rd thoracic segment
Caudally they elongate, join and fuse with the urogenital
sinus (medial to the mesonephric ducts)

At this time the mesonephric duct opens into the pelvic urethra The site of fusion with the pelvic urethra is called the

Mullerian tubercle

The bilaterally fused region of the duct is the Uterovaginal

canal

At the cranial end there is an opening into the coelom that is funnel shaped

Female Reproductive Tract

Ovary - Oogenesis

Uterine (Fallopian) Tube

Fimbriare (finger like projections of Infundibulum)

Infundibulum

Ampulla – Fertilization

Isthmus

Uterus - endometrium, myometrium, perimetrium

Cervix Vagina

Ovary

Primitive (medullary) sex cords degenerate and secondary sex cords form from cortical tissues - called Cortical sex cords

The germ cells in the degenerating medullary sex cords invade the cortical sex cords

Germ cells differentiate into oogonia and enter 1st meiosis- then arrest

Cords break up into cell clusters = primitive follicles containing oogonia and follicle cells.

Mullerian Ducts Develop in Female

In the absence of testosterone:

The mesonephric duct degenerates The Mullerian duct develops uninhibited

Mullerian duct- cranial funnel shaped opening to the coelom forms the fimbriare of the infundibulum

The cranial Mullerian duct forms the uterine tubes

The caudal end of the Mullerian ducts fuse to form the uterovaginal canal that later forms the uterus and the superior vagina

Urogenital Sinus

Urogenital sinus forms: Bladder

Pelvic urethra

Definitive urogenital sinus

Males **Females** Pelvic Urethra Membranous & Urethra

Prostatic Urethra

Definitive Urogenital Penile Urethra Vagina

Sinus

Uterus and Vagina

The cranial end of the uterovaginal canal forms the uterus

The caudal end of the uterovaginal canal forms the superior vagina

The inferior vagina forms from the definitive urogenital sinus

The uterus and vagina becomes occluded by tissue called the uterovaginal plate (forms from the Mullerian tubercle) that canalizes to form the lumen of the uterus and vagina

Male Reproductive Tract

Testis (seminiferous tubules) - Spermatogenesis
Epididymis – biochemical maturation
Ductus deferens (vas deferens)
Ejaculatory duct and inputs:
 seminal vesicle
 prostate gland
 bulbourethral gland
Urethra - out the penis

Testis Development

With the expression of Testosterone:

Primitive (medullary) sex cords of the genital ridge are maintained and the cortical tissues degenerate.

The medullary sex cord cells form the testis cords that contain Sertoli cells

Regions of the testis cords that contain germ cells will canalize and form the seminiferous tubules of the mature testis.

The inner portion of the testis cords form the Rete testis

The Rete testis connects with the efferent ductules of the Mesonephric duct

Seminiferous tubules become separated by mesenchyme that forms the interstitial cells of Leydig

Mesonephric Duct Develops in Males

The male utilizes the mesonephric duct while the paramesonephric (Mullerian) duct degenerates.

Leydig cells produce testosterone and Mullerian-Inhibiting Substance (MIS)

MIS induces Mullerian duct regression

The Rete testis connects with 5-12 residual efferent mesonephric tubules which connects the testis to the mesonephric duct system

The mesonephric duct becomes the epididymis in this region.

Male Duct System

Futher caudally the mesonephric duct becomes the ductus deferens and drains into the urethra

Near the caudal end of the mesonephric duct the seminal vesicle develops as a lateral outgrowth

Caudal to the seminal vesicle the mesonephric duct becomes the ejaculatory duct

Prostate Gland forms from endodermal cells of the urethra and the surrounding mesenchyme, the glandular epithelium is endodermal

Bulbourethral gland - pea sized - endodermal outgrowths from urethra

Urogenital Sinus

Urogenital sinus forms:

Bladder

Pelvic urethra

Definitive urogenital sinus

Pelvic Urethra

Males
Membranous & Urethra
Prostatic Urethra

Definitive Urogenital Penile Urethra Vagina

Sinus

External Genitalia

Initially the same in both sexes - Indifferent stage

Genital folds flank the urogenital membrane

The anterior genital folds forms the **genital tubercle**

Lateral to the genital folds are the **genital swellings**

The genital tubercle elongates to form the **phallus**

Male Genitalia

Phallus elongates

Genital swellings enlarge and fuse to form the scrotum

Genital folds fuse to form the penile urethra - note: penile urethra does not extend to the tip of the penis

An ectodermal invagination at the tip of the penis fuses with the penile urethra.

Descent of the gonads

Both male and female gonads descend from the 10th thoracic level Females descend less than males

- In Males there are 3 phases of the descent

 1) Caudal displacement due to regression of the mesonephic kidneys
 - Transabdominal descent to the Inguinal ring caused by regression of the Mullerian ducts (MIS activity)
 - 3) Transinguinal descent into the scrotum guided by the gubernaculum into the vaginal process (evagination of the caudal abdominal wall)

Indifferent structure	Male derivative	Female derivative
Genital ridge	Testis	Ovary
Primordial germ cells	Spermatozoa	Ova
Sex cords	Seminiferous tubules (Sertoli cells)	Follicular cells
Mesonephric tubules	Efferent ductules	Eoophoron
	Paradidymis	Paroophoron
Mesonephric (wolffian) ducts	Appendix of epididymis	Appendix of ovary
	Epididymal duct	Gartner's duct
	Ductus deferens	
	Ejaculatory duct	
Paramesonephric (müllerian) ducts	Appendix of testis	Uterine tubes
	Prostate utricle	Uterus
		Upper vagina
Definitive urogenital sinus (lower part)	Penile urethra	Lower vagina
		Vaginal vestibule
Early urogenital sinus (upper part)	Urinary bladder	Urinary bladder
	Prostatic urethra	Urethra
Genital tubercle	Penis ·	Clitoris
Genital folds	Floor of penile urethra	Labia minora
Genital swellings	Scrotum	Labia majora

Genital Anomalies - Genetics

Hermaphroditism - ambiguous external genitalia
True hermaphrodite - both ovarian and testicular tissues
Generally 46,XX (crossing over, X with short arm of Y)
Ovotestes formation - medulla and cortex development

Male pseudohermaphroditism - 46,XY
External genitalia and ducts are intersex
Inadequate testosterone or abnormal MIS production

 $\label{eq:continuous} Female\ pseudohermaphroditism\ -\ 46, XX\\ Overproduction\ of\ androgens$

Masculinization of genitalia - clitoral hypertrophy

Androgen insensitivity syndrome (Testicular feminization syndrome) - 46,XY - female in all ways but with testis - results from androgen receptor defects