Cleavage

```
Cell Division – Cell Cycle Control
Morula – Compaction
Blastocyst – Hatching
Implantation – Decidual Reaction
Early Cell Lineages
     Inner Cell Mass
     Trophoblasts (Extra-embryonic)
Anomalies
```

Cleavage

Cleavage

Equal

Asynchronous

40 hours – 4 cells

72 hours – 6-12 cells

96 hours – 16-32 cells

Cleavage – Molecular Events

In mammals – no large maternal stores of RNA and ribosomes

Zygotic transcription begins by 2-4 cell stage

Oct-3 – Transcription factor expressed in egg
KO in mouse – arrest at 1 cell stage
Expressed in blastomeres up to morula stage
Expressed in germ cells

Cell Cycle Control

MFP = Maturation-promoting factor, or mitosis-promoting factor

Cell Cycle Control

```
MPF – Mitosis Promoting Factor
Heterodimer (cdc2 and cyclin B)
Some Activities: Nuclear envelope breakdown,
assembly of mitotic spindle
```

- Cdc2 Cell Division Cycle 2
 Phosphoprotein (P in S and G2)
 Constitutively expressed
- Cyclin B –present in G2 and M
 Bound to cdc2
 Phosphoprotein (P in M)
 Degraded in G1

Morula

32 cell stage 'Berry' - appearance

Compaction

Compaction – blastomeres: loosely adherent → tightly adherent cytoskeleton reorganization, tight junctions
Inner Cell Mass vs. Outer Cell Mass

Blastocyst

Embryo pole

Inner cell mass
(embryoblast)

Blastocoel

Outer cell mass (trophoblast)

abembryonic pole

Hatching: Enzymatic production by Trophoblasts - digestion of the Zona Pellucida

Zona Pellucida - Functions

Species-specific sperm penetration

Permanent block to polyspermy

Acts as a porous selective filter - uterine tube signals

Immunological barrier - no HLA (histocompatibility antigens)

Keeps blastomeres together (loosely adherent)

Prevents premature implantation

Implantation

Decidual reaction – Progesterone induced endometrial cell conversion to secretory decidual cell

Implantation

Days 6 –12

Adhesion, blastocyst to endometrium

Trophoblast proliferation

Syncytiotrophoblast

Secretion of hydrolytic enzymes

Breakdown of endometrium

Day 6

Blastocyst adheres to endometrium at embryo pole

Trophoblast proliferation production of hCG (maintains corpus luteum)

Embryo invasion

Trophoblasts

Syncytiotrophoblast

hydrolytic enzymes

Cytotrophoblast

Day 7-8

Syncytiotrophoblast expansion

Lacunae form – filled with fluid (embryotroph)

Embryotroph provides nutrients to the embryo. Derived from maternal blood.

Embryo - Bilaminar germ disc:

Cytotrophoblast

Epiblast layer – cavitates to form the amnionic cavity. Hypoblast layer form the exocoelomic cavity / primary yolk sac

Day 9-10

Lacunae enlarge

Syncytiotrophoblast expands around entire blastocyst

Cytotrophoblasts form primary villus – initiation of placenta formation

Implantation Complete

Secon Coagulation Plug forms

Embryo: hypoblast → exocoelomic membrane = Hauser's membrane Extraembryonic mesoderm from yolk sac

Day 11-12

Syncytiotrophoblast erode maternal capillaries – form sinusoids

Syncytial lacunae become continuous with sinusoids

Maternal blood to enter lacunae establishing the uteroplacental circulation

Day 11-12 – Embryo

Yolk sac → extraembryonic mesoderm

Extraembryonic Somatopleuric mesoderm - layer between amnion and cytotrophoblst

Extraembryonic Splanchnopleuric mesoderm - layer between Primary yolk sac and cytotrophoblast

Extraembryonic mesoderm becomes confluent and forms another cavity – extraembryonic coelom or chorionic cavity

Implantation

Summary

- Day 0 Fertilization in Ampulla of uterine tube
- Day 1 Zygotic transcription begins
- Day 1-3 Cleavage morula compaction
- Day 3-4 Transport to uterine cavity
 - Relaxation of the uterotubal junction
- Day 5 Maturation of blastocyst, hatching
- Day 6-7 Attachment / penetration of uterine stroma
- Day 7-9 Invasion of uterine stroma
- Day 9-11 Lacuna formation, erosion of spiral arteries

Early Cell Lineages

Extraembryonic
Somatopleuric
Mesoderm

Extraembryonic
Splanchnopluric
Mesoderm

Extraembryonic Tissues

7 days

8 days

Extraembryonic Tissues

8 days

9 days

14 days

Amnion

Amnionic Cavity

Cavitation

From BM Carlson, 1999

]

r

Extraembryonic
Somatopleuric

B Mesoderm

Extraembryonic

^r Splanchnopluric

Mesoderm

0

Extraembryonic Tissues

8 days

14 days

Implantation Sites

Typical - Mid-Uterus

Distribution of atypical implantation sites

Dizygotic Twins

Dichorial

Monochorial

Monozygotic Twins

Dichorial/
Diamniotic (33%)

Monochorial/
Diamniotic (66%)

Monochorial/
Monoamniotic (rare)

Vanishing twins (triplets)

20% of twin pregnancies

Chromosomal or Structural abnormalities

Twins, Discordant Growth

Abdominal circumference, 3rd Trimester

>25% - associated with increased morbidity

Papyraceus – Death of a monochorionic co-twin Circulatory interactions can cause problems

Table 16.1
Twinning rates per 1000 maternities by zygosity in different countries

	Monozygotic	Dizygotic	Total
Nigeria USA	5.0	49.0	54.0
black	4.7	11.1	15.8
white	4.2	7.1	11.3
England and			
Wales	3.5	8.8	12.3
India	3.3	8.1	11.4
Japan	3.0	1.3	4.3

Table 16.2
Different monozygotic twin types

Time of division	Type of twinning
< 4 days	Dichorionic diamniotic
4-8 days	Monochorionic diamniotic
8-13 days	Monochorionic monoamniotic
> 13 days	Conjoined twins

Conjoined Twins

Cephalopagus

Pygopagus

Cephalothoracopagus \$\[\]

Thoracopagus

Ultrasound of conjoined twins

Pygopagus

Daisy and Violet*~English Siamese Twins*

Posterior union of the rump 19% of all conjoined twins.

Parapagus

Lateral union of the lower half

Cephalopagus

Anterior union of the upper half of the body with two faces on opposite sides of a conjoined head.

The heart is sometimes involved.

Cephalothoracopagus

Union of head and chest
There is only one brain
Hearts and gastrointestinal tracts
are fused.

Craniopagus

Cranial fusion only

Parasitic Conjoined Twins

One twin without brain or heart

Thoracopagus

Anterior union of the upper half of the trunk.

The most common form of conjoined twins (about 75%)

Always sharing the heart.

Hydatidiform Mole

Pregnancy without an embryo (complete or partial mole)

Complete Mole = Only a placenta / No fetus – Diploid but with 2 sets of paternal chromosomes, no maternal contribution

Partial Mole = Triploid (Maternal, 1N; Paternal, 2N)

Diagnosis – high hCG levels; ploidy analysis (flow cytometry)

1:1200 pregnancies in US; 1:200 pregnancies in Latin America/Asia

Hydatidiform Mole

Snow Storm appearance

Cystic Areas (white arrows)

No fetus

Placenta (open black arrows)

Partial Mole – cystic areas present

Fetus is present
commonly triploid
twin with mole in one sac
(rare)

Imprinting

Parental Imprinting

- Identical genes derived from maternal and paternal DNA display differential expression
- Selected genes are turned off during gametogenesis by methylation of certain bases
- Imprinted patterns are not passed on to progeny, imprints erased during gametogenesis
- Beckwith-Wiedemann syndrome Igf2
- Long arm Chr 15 deletion Angelman's syndrome - Maternal deletion Prader-Willi syndrome - Paternal deletion

Beckwith-Wiedemann Syndrome

Chromosome 11

- Igf2 (Insulin-like Growth Factor) growth promoter
- H₁₉ a growth suppressor
- Mental deficiency mild to moderate
- Macrosomia excessive growth, muscle, subcutaneous tissues
- Macroglossia protruding tongue, overgrowth of other craniofacial structures
- Organ Hyperplasia kidneys, pancreas

Angelman's Syndrome

"Happy Puppet Syndrome"

Puppet like gait

Widely spaced teeth

Macroglossia

Decreased occular pigment \rightarrow pale blue eyes

Prader-Willi Syndrome

- Paternal long arm of Chromosome 15 deletion
- Mental deficiency mild-moderate
- Normal birth size decreased growth rate
- Short stature / Obesity
- Very small hands, feet, genitalia
- Fair skin, blue eyes, sun-sensitivity
- Craniofacial almond-shaped, narrow bifrontal diameter

X-Chromosome Inactivation

Inequality of Genetic Expression

Female-specific, 1 X-chromosome is inactive Barr body – extreme condensation

Both Xs are active thru cleavage

Blastocyst - Trophoblast – paternal X inactivated Inner Cell Mass – both are active

Egg cylinder stage – differential X inactivation in cell lineages

Oogenesis – both Xs become active

Regulative Development

Ability of an embryo or organ to develop normally after removal or addition of parts

Fate of cells is not irreversibly fixed – influenced by environment

Contrast Mosaic Development

Fate Mapping studies

Developmental Potency – Totipotency

Stem Cells

Position-Specific Differentiation

Inside-Outside Hypothesis

8-16 Cell Stage - Totipotent

Transgenic Mice

Cloning Dolly

