

ROCKS	Most rocks are any naturally formed aggregates or masses of minerals. Other types are composed by organic matter
IGNEOUS ROCKS	Formed by the crystallization of magma.
MAGMA	Natural hot melt composed by SILICATE liquids and solids and gases (mostly $H_20 + CO_2$). Minor amounts of Sulfur, Cl, and F
LAVA?	

IGNEOUS ROCKS can be classified on the basis of their **COMPOSITION** (chemical or mineralogical) and their **TEXTURE**.

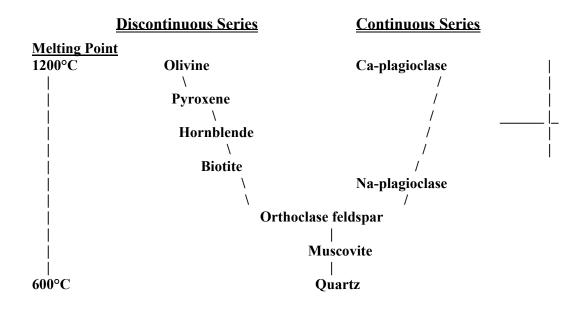
IGNEOUS ROCKS COMPOSITION MINERALS: SILICATES (SiO₄)

The most important silicate minerals are:

MINERALS	CHEMICAL	ELEMENTS
	FORMULAE	
FELDSPAR		
1. PLAGIOCLASE	$(NaAlSi_{3}O_{8} - CaAl2Si2O_{8})$	[Ca, Na, Al]
2. K-FELDSPAR	(KAlSi ₃ O ₈)	[K, Al]
(ORTHOCLASE)		
3. OLIVINE	$((Fe, Mg)_2 SiO_4)$	[Fe, Mg]
4. PYROXENE		[Fe, Mg with
AUGITE	$((Ca, Na) (Mg, Fe^{2+}Al)$	Ca, Na and
	$(Si,Al)_2O_8$	Al]
5. AMPHIBOLE		[hydrous Ca,
(HORNBLENDE)		Fe, Mg, Al]
6. QUARTZ	(SiO_2)	[Si]
MICA		[hydrous K,
7. BIOTITE	$(K (Mg, Fe)_3)$	Fe, Mg, Al]
	$AlSiO_{3}O_{10}(OH)_{2}$	[hydrous K,
8. MUSCOVITE	$(KAl_3AlSi_3O_{10}(OH)_2)$	Al]

These minerals make up to 95% of the volume of common igneous rocks and thus are important for purposes of classification as well as in studies about their origins.

MAGMA / ROCK TYPE


MAGMA TYPE	CHEMICAL	MINEDALC	CENEDAL
MAGMA I YPE	CHEMICAL	MINERALS	GENERAL
	COMPOSITION	PRESENT	ROCK COLOR
SIALIC GRANITIC	MAGMA RICH IN Si and Al	Quartz	LIGHT-
OR FELSIC	Na, K	K-F. (Orthoclase)	COLORED
		Na-Feldspar	(light gray, creamy brown,
		Na-Plagioclase	pink)
		+/- Muscovite	
		(Felsic minerals)	
		[LIGHT-COLORED	
		MINERALS	
MAFIC, BASALTIC	MAGMA RICH IN Fe, Mg,	Olivine	DARK-
OR BASIC	Ca (low in Si)	Pyroxene	COLORED
		Ca-Plagioclase	(dark-gray, black)
		+/- Biotite	
		Diotite	
		+/- Hornblende	
		+/- Hornblende	
		+/- Hornblende (Ferromagnesian	
		+/- Hornblende (Ferromagnesian minerals)	
		+/- Hornblende (Ferromagnesian minerals) DARK-COLORED	
		+/- Hornblende (Ferromagnesian minerals) DARK-COLORED	
		+/- Hornblende (Ferromagnesian minerals) DARK-COLORED	

MAGMA / ROCK TYPE

MAGMA TYPE	CHEMICAL	MINERALS	GENERAL
	COMPOSITION	PRESENT	ROCK COLOR
SIALIC GRANITIC	MAGMA RICH IN Si and Al	Ouartz	LIGHT-
OR FELSIC	Na, K	K-F. (Orthoclase)	COLORED
	,	Na-Feldspar	(light gray, creamy brown,
		Na-Plagioclase	pink)
		+/- Muscovite	
		(Felsic minerals)	
		LIGHT-COLORED	
		MINERALS	
INTERMEDIATE			INTERMEDIATE-
			COLORED
			("medium gray")
MAFIC, BASALTIC	MAGMA RICH IN Fe, Mg,	Olivine	DARK-
OR BASIC	Ca (low in Si)	Pyroxene	COLORED
		Ca-Plagioclase	(dark-gray, black)
		+/- Biotite	
		+/- Hornblende	
		(Ferromagnesian	
		minerals)	
		DARK-COLORED	
		MINERALS	
ULTRAMAFIC	MAGMA RICH IN Fe, Mg,	Usually composed by	DARK-COLORED
	Ca (extremely low in Si)	one mineral species	(green, dark gray, black)
		Olivine	
		Pyroxene	
		Ca-Plagioclase	

BOWEN'S REACTION SERIES

Prediction of the mineral composition of a rock formed by solidification of magma. Based on experimental data, an order of crystallization (or nucleation) has been established (*p. 44 Fig. 3.17*)

Continuous Reaction Series (Plagioclase Feldspars)

Ca is preferentially taken up in plagioclase crystallizing at a high temperature (~ 1200 °C). Thus, as the melt cools, the composition of the melt changes. Ca is being removed and incorporated into early-forming, high-temperature plagioclase crystals, leaving the melt depleted in Ca but relatively enriched in Na. Plagioclase crystallized at lower temperatures is consequently richer in Na.

Discontinuous Reaction Series

Minerals crystallize from the melt but subsequently react with the remaining melt as the temperature changes to form new minerals e.g. Olivine crystallizes at high temperature (~ 1200 °C), but as the remaining melt cools, the olivine crystals become unstable and react with the melt to form a new mineral group (pyroxenes).

Both the continuous and discontinuous series occur simultaneously as a melt cools (or as a rock heats up), giving rise to different mineral assemblages in rocks formed at different temperatures.

Exactly which minerals form depends on the starting composition of the magma and the rate of cooling.

<u>**TEXTURE</u>** Refers to the geometrical aspects of the component particles (minerals) of a rocks. These include <u>SIZE</u>, <u>SHAPE</u>, and <u>ARRANGEMENT</u> or <u>CONTACT RELATIONSHIPS</u> among particles.</u>

TYPE OF TEXTURE	DESCRIPTION	SIZE OF THE CRYSTALS		RATE OF COOLING	ROCK TYPE / ENVIRONMENT
PHANERITIC (equigranular)	Individual crystals can be seen be the naked eye Macroscopic	Barely visible to more than one inch in length	Interlocking mosaic of crystals	Magmas cooling slowly. Crystallize at one position within the earth's crust	Plutonic or Intrusive
APHANITIC (equigranular)	Individual crystals very small. They cannot be detected without the aid of a microscope Microscopic	In thin sections under the microscope you can see crystals and sometimes glass	Massive or structure less	Magmas cooling rapidly	Volcanic or Extrusive
PORPHYRITIC	Has two distinct cryst				.
PORPHYRITIC- PHANERITIC	Has two distinct crystal sizes, both seen with the naked eye	Groundmass (smaller crystals) Phenocrystals (larger crystals)	2 5 mm	If a magma moves upward during its crystallization the rates of cooling will change, producing different crystal sizes	Intrusive or Plutonic
PORPHYRITIC -APHANITIC	Has two distinct crystal sizes	Aphanitc Groundmass Phaneritic Phenocrystals		Two rates of cooling. Slow then fast	Volcanic or Extrusive When phenocrystals are abundant the rock may look with a phaneritic texture

TYPE OF TEXTURE	DESCRIPTION	SIZE OF THE CRYSTALS		WHERE THEY DEVELOP	ROCK TYPES
GLASSY	Similar to ordinary glass	Very few microscopic crystals. Mostly glass		Reflects extreme rapid rate of cooling in absence of gases	Volcanic or Extrusive Massive units or threadlike mesh similar to spun glass
VESICULAR AMIGDULAR	Presents vesicles Filled vesicles		00000	Formed by the expansion of a bubble of gas or steam during the crystallization of the rock	Volcanic or Extrusive Small cavities in an aphanitic or glassy rock. Formed
PYROCLASTIC	Broken angular fragments of rock material	Pumice, glass, broken crystals <4 mm tuff >4 mm volcanic breccia			Volcanic or Extrusive