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ABSTRACT: The present-day continental slope offshore Brunei Darussalam (NW Borneo) displays several networks of submarine channels
possessing planform attributes similar to those observed in better-studied river systems. We use shallow 3D seismic data to study one
tributary network in detail. This network is located directly downslope from the shelf-edge Champion Delta and encompasses an area
approximately 8 km by 24 km in the strike and dip directions. The channels in this network initiate 1–2 km down dip of the shelf edge and
are not directly linked to a terrestrial river system. Mapping of shallow seismic horizons reveals that the tributary channel network is an
aggradational feature constructed on top of a relatively smooth slide plane associated with a large mass-failure event. This observation
highlights differences between network construction in submarine settings compared to terrestrial settings where tributary networks are
net erosional features. The smooth slide plane provides us with the simplest possible initial condition for studying the deposit architecture
of an aggradational submarine-channel network. An isopach map between the seafloor and the slide plane is used to unravel sedimentation
trends, particularly relative rates of levee and overbank sedimentation as a function of channel relief, lateral distance from the nearest
channel centerline, and distance from the shelf edge. We observe an anti-correlation between channel relief and deposit thickness, which
suggests that the degree to which currents are confined within channels exerts a first-order control on local deposition rates. We also find
that over 80% of the deposit volume associated with the aggradational network is within levees. Observations suggest that this channel
network was constructed from turbidity currents that initiated at the shelf edge as sheet flows prior to transitioning down slope into weakly
confined flows through the construction of aggradational channels. Thicknesses of channel-forming turbidity currents are estimated using
the distance between channel heads and the ratio of channel to overbank deposit thickness. These two methods yield estimates for flow
thicknesses that are between 1.1 and 3 times the mean relief of channels in the network.
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INTRODUCTION

Turbidity currents and the submarine channels they con-
struct have received significant scientific attention in recent
years due to their importance in shaping the morphology of
continental margins (Gerber et al., 2009; Gerber et al., 2008;
Kostic et al., 2002; Pirmez et al., 2000; Pirmez and Imran, 2003;
Posamentier and Kolla, 2003; Pratson et al., 2007; Puig et al.,
2003; Wynn et al., 2007) and because turbidite deposits on
modern continental margins form major hydrocarbon reser-
voirs (Weimer and Link, 1991). A suite of research methods have
been used to unravel the architecture of turbidite deposits and
the morphodynamics associated with submarine landscapes.
These methods include reduced-scale laboratory experiments
(Garcia and Parker, 1993; Metivier et al., 2005; Peakall et al.,
2007; Straub et al., 2008; Yu et al., 2006), numerical models
(Cantero et al., 2007; Das et al., 2004; Huang et al., 2007), analysis
of deposits in outcrop (Campion et al., 2000; Hodgson et al.,
2006; Pyles, 2008), sediment cores (Dennielou et al., 2006; Winker
and Booth, 2000), and seismic data (Abreu et al., 2003; Deptuck
et al., 2003; Pirmez and Flood, 1995; Spinnelli and Field, 2001;
Sylvester et al., this volume). In addition to these tools, several

recent studies of submarine environments have utilized meth-
ods developed within the geomorphology community to study
terrestrial landscape evolution (Mitchell, 2005, 2006). To what
degree we can transfer these tools from terrestrial to submarine
environments is an area of active research.

With few exceptions (Posamentier and Walker, 2006), most
studies of submarine channels have focused on systems that
initiate as erosional canyons either directly connected to a present-
day river system or starting at the shelf–slope break. In this paper
we describe the depositional architecture of a different type of
submarine system, a tributary submarine-channel network that
is an aggradational feature positioned downslope of the shelf
edge offshore Brunei Darussalam. The limited attention paid to
net-aggradational channel networks does not correspond to their
importance in continental-margin morphodynamics. Channel-
ized stratigraphy is constructed in net-aggradational settings,
and thus understanding these systems is critical for models of
seascape evolution. In the marine geology community there has
also been a tendency to focus on the architecture of submarine
distributary networks relative to their tributary counterparts
(Babonneau et al., 2002; Damuth et al., 1983; Normark et al., 1979;
Vittori et al., 2000). This likely reflects an assumption, through
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analogy to terrestrial systems (Crosby and Whipple, 2006; Snyder
et al., 2000; Willgoose et al., 1991), that tributary networks are net-
erosional features. In this paper we show that tributary networks
are not always net-erosional features in the submarine environ-
ment. This study utilizes seafloor topography and imaging of the
shallow subsurface stratigraphy from a three-dimensional (3D)
seismic survey obtained as part of hydrocarbon exploration
efforts offshore Brunei Darussalam. Our analysis and observa-
tions are centered on three questions: (1) what controls the
present-day surface morphology and recent deposition trends
for this aggradational tributary channel network, (2) how does
the architecture of this submarine network compare to terrestrial
tributary channel networks, and (3) what attributes are associ-
ated with channel initiation in net-depositional settings, particu-
larly those located directly downslope of shelf-edge deltas?

GEOLOGICAL SETTING AND PREVIOUS WORK

The continental shelf and slope system offshore Brunei
Darussalam has been the focus of several studies over the last ten
years. This focus can be attributed to the availability of several
generations of 3D seismic surveys which span the continental
margin from the shelf to the abyssal plain. Past studies include the
sequence stratigraphy of the shelf (Saller and Blake, 2003), mor-
phology of giant submarine landslide scarps and slides (Gee et al.,
2007), controls on the margin accretionary prism (Morley, 2007),

margin morphology and depositional processes (Demyttenaere
et al., 2000; Hiscott, 2001; Smith, 2004; Straub and Mohrig, 2008,
2009), and scaling laws for submarine channel networks (Straub
et al., 2007). Below we provide a brief summary of the geological
history for this margin.

The present-day continental margin offshore northern Borneo
(Fig. 1) transitioned from a compressional margin to a passive
margin in the late Miocene. Since then, the morphology of the
continental slope offshore Brunei Darussalam has been con-
trolled primarily by the progradation of deltaic depocenters.
Most of the sediment is delivered to the margin by three river
systems, the Baram, Belait, and Tutong rivers. High sediment
discharges from these rivers has resulted in the construction of a
continental shelf that is 50–70 km wide and is underlain by 8–10
km of siliciclastic sediments. Using mapped seismic horizons tied
to wireline logs and biostratigraphic dates, Saller and Blake
(2003) estimate that the Brunei shelf edge has prograded 80 km
seaward since the Middle Miocene. Beginning in the Late Mi-
ocene, progradation was highest along the northeastern part of
the Brunei shelf, associated with growth of the Champion Delta.
The locus of deposition shifted to the southwest during the Early
Pliocene, associated with the growth of the Baram Delta. The
change in deposition locus probably resulted from a capture of
substantial parts of the Champion Delta hinterland drainage by
the Baram River. Shelf-margin progradation during the Quater-
nary was relatively rapid at 11 km/My (or a total progradation of
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20 km). Quaternary deposits are thickest in the southwest associ-
ated with lowstand deltas. Of the three rivers, the Baram cur-
rently has the largest drainage-basin area and water and sedi-
ment discharges, 1.92 x 104 km2, 1445 m3/s, and 2.4 x 1010 kg/yr,
respectively. The sediments come from the erosion of uplifted
rocks in the Rajang–Crocker range in central Borneo. This moun-
tain range is composed mainly of fine-grained mudstones and
siltstones deposited in the Late Cretaceous through the Oli-
gocene. As a result of the composition of this range and the
tropical monsoon climate in central Borneo, erosion rates in this
range have been amongst the highest in the world since the
Eocene (Sandal, 1996).

Offshore Brunei Darussalam, the continental shelf–slope break
occurs at a water depth of ~ 180 m (Fig. 2). From this position the
seabed descends until reaching the floor of the Borneo Trough at
a water depth of 2800 m. The upper slope is characterized by a
relatively steep average gradient of 0.048 (Demyttenaere et al.,
2000; McGilvery and Cook, 2003). Superimposed on this regional
dipping surface are several tributary networks of submarine
channels and a series of strike-parallel ridges. These ridges are the
product of diapirism by mobile overpressured shale and relict
fold and thrust structures. The combination of the high surface
gradients, fold and thrust deformation, and shale diapirism has
led to multiple mass-failure events on the upper slope (Gee et al.,
2007; Steffens et al., 2003).

Exploration for and production of hydrocarbons has occurred
on the Brunei continental margin for over twenty years. Numer-
ous well penetrations demonstrate that sediments deposited on
the continental margin since the Pliocene range between clay and
sand, including a large fraction of deposits interpreted as turbid-
ites. Turbidites on the continental slope of Brunei have been
identified, using cores, logs, and interpretation of shallow seismic
data in both relatively unconfined (Sandal, 1996) and relatively
confined (i.e., channelized) (Demyttenaere et al., 2000) settings.

Seismic Data Set Parameters

The study area is 555 km2 in area and is centered over a
tributary network of channels on the continental slope, down dip
from the Champion Delta. We focus on the shallow sedimentary
section positioned between the seafloor and 0.4 s of two-way
travel time (TWTT) beneath the seafloor. The spectral amplitude
roll-off for this portion of the seismic volume is near 80 Hz,
providing a vertical resolution for deposit thickness on the order
of 5 m. The entire survey was collected on a horizontal grid with
25 m x 25 m spacing. The seismic reflectors defining the seafloor
and two laterally persistent subsurface horizons were picked
manually on every grid inline in order to produce the highest-
quality set of maps for these three horizons. A digital elevation
model (DEM) was created for each horizon by converting two-
way time to depth. Depth conversion for the seafloor horizon
assumed an average water-column velocity of 1500 m/s, and for
the subsurface horizons we assumed an average velocity of 1700
m/s for the interval between the seafloor and the mapped hori-
zon. This seismic velocity was measured for the first 300 m below
seafloor, 60 km to the southwest of our study region (van
Rensbergen et al., 1999).

OBSERVATIONS: SEAFLOOR MORPHOLOGY

The DEM of the continental shelf and slope offshore Brunei
Darussalam shows several prominent morphological features
(Fig. 2). The shelf edge lies at approximately 180 m water depth.
On the upper continental slope there is a tributary network of
channels extending 8 km x 24 km in the strike and dip directions,

respectively. This network is positioned downslope of a large
mass-failure scarp and within the topographic low produced
following a mass-failure detachment. A prominent ridge is ob-
served downslope of the tributary network of channels.

The average bathymetric profile of the continental slope in
our study region is presented in Figure 3A, and its associated
surface gradient is plotted in Figure 3B. This average profile is a
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swath profile calculated using water depth to the seafloor at
every grid node in our study region as a function of distance from
the shelf edge. This calculation takes advantage of the approxi-
mately 1,200,000 grid nodes in our study volume. The shelf edge
was interpreted as the point of highest bathymetric curvature
occurring in the transition zone between the overall low-gradi-
ent shelf (less than about 0.01) to the overall high-gradient slope
(greater than about 0.05; Fig. 2B). With this boundary we calcu-
lated the shortest path length to the shelf edge for every grid
node in our map of seafloor topography. Seafloor bathymetry
was then sorted into bins of equal distance from the shelf edge,
spaced every 25 m, and the average seafloor topography was
then calculated for the points that fell into each bin. Downslope
gradient was calculated at each node using the elevation differ-
ence between its upslope and downslope neighboring bins. The
highest average surface gradients in our study area are posi-
tioned directly downslope from the shelf edge and are observed
to be ~ 0.14. This zone of high gradient is followed by a zone in
which surface gradient decreases rapidly to a value of 0.05.
Farther downslope, the surface gradient persists at the relatively
constant value of 0.05 (Fig. 3B).

Analytical Techniques

The tributary channel network in our study area is composed
of 10 channels that initiate 1–2 km downslope of the shelf edge.
We extract long profiles for each of these 10 channels using our
seafloor DEM in a manner analogous to the analysis of terrestrial
drainage basin by Snyder et al. (2000). This process uses the
accumulation of upstream drainage-basin area to define the
locations of channels. In terrestrial settings, drainage-basin area
associated with any one grid node is calculated by tracking all
upstream grid nodes that have a steepest path of descent that
feeds into the grid node in question. In the terrestrial environ-
ment, the upslope boundary of a drainage basin is associated with
topographic highs that separate the path of fluid flow between
neighboring basins. This definition must be modified for subma-
rine drainage basins because they are linked to the shelf and
terrestrial environments upslope. For this study we assume that
submarine flow events initiate at the edge of the continental shelf
and use this to define the upslope extent of drainage basins as

proposed by Straub et al. (2007). The lateral divides of our
drainage basin downslope of the shelf edge are then defined in
the same way as is done in terrestrial studies: that is, they are lines
separating steepest paths of descent that result in flow paths
terminating at the downslope confluence of our study basin (Fig.
2A) from flow paths that terminate in neighboring basins. The
boundary of our study basin is presented in Figure 2B. The
location for the head of each channel was defined by grid nodes
that have an associated drainage-basin area in excess of 2 km2.
This value of area ensures consistency between head locations
selected by the DEM analysis and identified on the slope-magni-
tude map of seafloor topography. This method is similar to
Montgomery and Dietrich’s (1988) method for identifying terres-
trial channel heads. In addition, this definition also corresponds
to locations where channels reach a sufficient depth to be visible
on our seafloor map. All 10 channels increase rapidly in relief
from 0 m at a distance of ~ 1–2 km below the shelf edge to an
average value of 40 m approximately 7 km downslope of the shelf
edge. The three major trunk channels maintain this roughly
constant relief for the remainder of their lengths. A plot of channel
thalweg profiles is presented as Figure 4. In this figure, profiles
are aligned with distance from the distal-most channel confluence
in the network. Gradients for the low-order channels average ~
0.07, compared to an average gradient for the trunk channels of
~ 0.05. Knickpoints occur at several of the channel confluences.

Channel relief was measured for 1921 channel cross sections
within the study network. For 206 of these channel cross sections,
channel width was also measured. This number of measurements
of channel relief and width allowed us to assess the relationship
between these two parameters. Cross sections were oriented
approximately perpendicular to the direction of the local channel
centerline. Channel width was defined as the horizontal distance
between levee crests. Channel relief was measured as the eleva-
tion difference between the average water depth for the two levee
crests and the channel thalweg. We used the seismic data to
determine if channel reliefs had been altered by deposition from
post-abandonment sedimentation (largely resulting from
overbanking flow of neighboring channels). Channels that had
been altered by post-abandonment deposition were then ex-
cluded from our analysis. A cross-plot of channel width and relief
is presented in Figure 5. We observe a linear increase in channel
width with increases in channel relief. The observed trend sug-
gests that for this particular system the channels have a minimum
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width of approximately 200 m at the point of channel initiation
(i.e., the channel head).

One of the goals of our study was to quantify correlations
between channel dimensions and basin characteristics, including
distance from the shelf edge and contributing drainage-basin
area. The first set of parameters that we explore is the relationship
between channel dimensions (width and relief) and distance
from the shelf edge. To quantify these trends we calculated the
shortest path length to the shelf edge for the midpoint of every
measured channel cross section. The line describing the shelf
edge is the same line used in calculating the swath profile (Fig.
2B). Channel width and relief were then sorted into bins of equal
distance from the shelf edge (Fig. 6). Both mean channel width
and relief increase rapidly between 4 and 8 km from the shelf
edge, but then remain approximately constant with further dis-
tance from the shelf–slope break.

Next we assess how channel width and relief scale with
upslope drainage-basin area. In terrestrial environments, several
studies have observed power-law relationships between channel
width and relief and upslope contributing drainage-basin area. In
these studies the exponent, α, in the equation relating channel
width to basin area,

(1)

where A is drainage basin area and w is channel width, ranges
between 0.4 and 0.55 (Church and Rood, 1983; Leopold, 1994;
Leopold and Maddock, 1953). In the equation

(2)

relating channel relief (R), to A, the scaling exponent (β) ranges
between 0.30 and 0.4 for terrestrial systems (Church and Rood,
1983; Leopold, 1994; Leopold and Maddock, 1953). We find that
α ranges between 0.1 and 0.2 (Fig. 7A) and β ranges from 0.15 to
0.25 (Fig. 7B) for these two channels.

Next, to address surface morphological characteristics at chan-
nel heads we measured the long profiles of the three largest

channels in our network. To complement the swath-profile data
presented in Figure 3, we also measured the channel gradient
along these three long profiles (Fig. 8). For each channel long
profile the location of the channel head is estimated using the grid
node on a channel long profile that has an associated drainage-
basin area in excess of 2 km2. We also extend these channel
profiles upslope of the channel head by tracking the path of
steepest ascent. For these three profiles the channel heads are
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located between 1 km and 2 km downslope of the location of
maximum gradient along the profiles. Additionally, the location
of maximum channel gradient for these three systems exists
between the shelf–slope break and the channel heads.

OBSERVATIONS: SHALLOW
SUBSURFACE ARCHITECTURE

Our study focuses on the section of stratigraphy preserved
between the seafloor and a depth below seafloor defined acous-
tically at 0.4 s TWTT. To unravel the recent margin evolution we
mapped two shallow regional surfaces (CD1 and CD2) (Fig. 9).
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These seismic horizons were selected because they have strong
reflection amplitudes that can be traced regionally and are cross-
cut only by local erosion in small patches. These characteristics
allow us to track the surfaces beneath the majority of the area
encompassed by the 10 channels in the study region (Fig. 10).
Maps of these seismic horizons represent approximate paleo-
bathymetry since there has been little deformation since accumu-
lation of this interval. The lateral extents of surfaces CD1 and CD2
represent planform boundaries where outside of these bound-
aries we could no longer confidently map the stratigraphic loca-
tion of the surface. At these boundaries strong-reflection-ampli-
tude seismic horizons either transitioned to weak-reflection-
amplitude horizons or to chaotic horizons. Biostratigraphic dates
obtained from exploration wells located 60 km to the southwest
of the study region suggest that both horizons are of Quaternary
age (Hiscott, 2001). Both maps lack significant local topography
associated with paleochannels, but they have features inter-
preted as failure scarps. On surface CD2 there is a failure scarp
with 70–90 m of relief that is oriented roughly north–south (Fig.

10A). On surface CD1 a failure scarp is observed with 30–50 m of
relief and a significant degree of variability in planform orienta-
tion (Fig. 10B). Downslope of the failure scarp on surface CD1,
several long linear striations exist which might represent gouge
marks formed during the release of a mass-failure event. The
expression of this failure scarp and material removed during this
failure is also seen on an isopach map measured between surfaces
CD2 and CD1 (Fig. 11A). Deposits of material released during
these mass failures are not found within the area covered by this
seismic volume. The region of the continental slope affected by
the two mapped mass-failure scarps exceeds 40 km2 in each
event.

Following the mass-failure release associated with the scarp
on surface CD1, the continental slope downdip of the Champion
delta has been a site of net deposition. A CD1-to-seafloor isopach
map shows development of leveed channels on top of the region-
ally extensive and relatively smooth slide plane and provides us
with the simplest possible initial condition for studying the
evolution of aggradational submarine channels (Fig. 11B). Sev-
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FIG. 10.—Maps of subsurface seismic horizons A) CD2 and B) CD1. Dashed lines mark the locations of failure scarps. The insert
delineates the boundaries of the two maps. A) Slope map of regional subsurface horizon CD2. The horizon defines the scarp and
slide plane associated with release of the mass failure. Contours define depth below the present-day seafloor. The contour interval
is 50 m. B) Slope map of regional subsurface horizon CD1. The horizon defines the scarp and slide plane associated with the release
of mass failure. Contours define depth below the present-day sea level.
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eral observations were made using the map of sediment thickness
between surfaces CD1 and the seafloor (∆ηCD1-SF). There is a
strong inverse relationship between distance from the shelf edge
and deposit thickness. This observation supports work by Saller
and Blake (2003) that this region of the Borneo margin is currently
undergoing progradation. Deposition appears to be influenced
by locally high surface gradients, associated with the subsurface
mass-failure scarps (Fig. 12). Relative local lows in deposit thick-
ness are present upslope of the scarp, and local deposit thickness
highs are present downslope of the scarp.

Analytical Techniques

Deposition on an initially nonchannelized surface allow for
the quantification of correlations between channel deposit thick-
ness, channel gradient, channel relief, and distance from the shelf
edge. A sequence of seismic lines oriented roughly perpendicular
to the average downslope direction reveals that channel width
and relief increase with downstream distance while deposit

thickness measured between the present-day seafloor and sur-
face CD1 tends to decrease with distance from the shelf edge (Fig.
13). In order to evaluate the interdependence between these
parameters we plot long profiles of channel relief and deposit
thickness for channels A–C (Fig. 14). Deposit thickness is mea-
sured between the present-day elevation of a channel thalweg
and that same location on map CD1. All three channel profiles
show a rapid increase of channel relief between 0 to 5–7 km from
their respective channel heads. This rapid increase is spatially
correlated with a rapid decrease of in-channel deposit thickness
for all three channels. Downslope of the initial increases in relief,
all three channels reach an approximately constant channel relief
for the remainder of the downslope region encompassed in our
study area.

The observations defining correlations between channel relief
and deposit thickness observed in Figure 14 aids interpretations
of channelized depositional processes on the Brunei Darussalam
margin. However, these observations use only a subset of the data
defining depositional patterns on this margin. Our goal is to
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characterize the depositional patterns resulting from channel-
ized and unconfined, because both are responsible for the progra-
dation of the slope. To accomplish this we analyze how deposit
thickness, measured at every grid node in the thickness map,
varies as a function of three properties: distance from the shelf
edge, gradient of horizon CD1, and distance from a channel
thalweg. These trends are described below.

To characterize how deposit thickness of ∆ηCD1-SF varies as a
function of distance from the shelf edge we use the location of the
shelf edge presented in Figure 2B. We calculate the shortest path
length to the shelf edge for every grid node (in excess of 400,000
data points) in the thickness map, of ∆ηCD1-SF, from which we can
then relate thickness to distance from the shelf edge. We then
binned the thickness data according to distance from the shelf
edge using a bin size of 250 m. Mean deposit thickness and
associated error bars as a function of distance from the shelf edge
are shown in Figure 15A. The coefficient of variation (CV) associ-
ated with this data is presented in Figure 15B. CV is defined as the
ratio of standard deviation of deposit thickness to mean deposit
thickness in one data bin. We note a decay in deposit thickness
with distance from shelf edge that is similar to that seen in the
channel profiles of deposit thickness in Figure 14.

Next we characterize the importance of surface gradient on
∆ηCD1-SF. We do this by comparing the maximum surface gradient
for every grid node of the map defining the topography of surface
CD1 with the deposit thickness associated with that grid node on

the map of ∆ηCD1-SF. Maximum surface gradient for each grid
node of horizon CD1 is defined as the maximum absolute surface
gradient between a grid node and its eight neighboring nodes.
We then sort data on deposit thickness into bins based on maxi-
mum surface gradient (Fig. 15C). No recognizable trend is ob-
served between maximum surface gradient of the margin and
resulting deposit thickness that exceeds the natural variability in
the map.

The map of recent deposit thickness throughout the subma-
rine-channel network contains the spatial information that de-
fines levee form and magnitude of sediment accumulation on the
distal overbank surface. Levee deposits are expected to gradually
thin away from the channels (e.g., Figs. 9B, 11B). To characterize
this depositional pattern we performed the following analysis.
First, we identified the location of every grid node on the thick-
ness map that corresponds to a thalweg of one of the 10 channels
in the network (Fig. 2B). Using this network we calculated the
path length to the nearest channel thalweg for every grid node.
This allows us to examine every local measure of thickness as a
function of distance from the closest channel thalweg. We then
sort and assemble all of the data points according to distance from
the closest channel with 25 m bins. Collapsing the data onto a
single trendline allows us to capture both the mean depositional
signal and the magnitude of variability about this trend associ-
ated with local topographic effects (Figs. 15D, 15E). It is worth
noting that this method of analysis assumes that deposition at any
node is associated only with the channel closest to this node,
which might not be the case if channels are not contemporaneous.
Utilizing this method, the results show that mean thickness
thickens rapidly away from the thalweg until a maximum value
near the levee crest, and then thins gradually until about 2 km
from the thalweg. Beyond 2 km from the thalweg, the mean
deposit thickness remains approximately constant at approxi-
mately 50 m.

DISCUSSION

What conditions are necessary for the initiation and construc-
tion of aggradational channel networks? An improved under-
standing of net aggradational networks is necessary for the
modeling of continental-margin stratigraphy because they are
the systems associated with transferring sediment to the subsur-
face. Our observations of recent erosional and depositional pat-
terns on the continental slope offshore Brunei Darussalam indi-
cate that the margin has experienced several large mass-wasting
events during the Quaternary that appear to “clear” the slope and
“reset” the topography. Following these large erosional events,
however, turbidity currents have constructed intricate tributary
channel networks through net deposition. The sediment accumu-
lated on the upper slope in these channel networks represents the
source of material for the mass failures. We have shown that these
networks can arise with a slope aggradation of only 100 m.

While the construction of net aggradational submarine chan-
nel networks has not received significant attention from field-
scale studies, the development of these systems has been studied
in the laboratory. Yu et al. (2006) produced self-channelized
subaqueous fans in an experimental basin. These experimental
channelized fans were produced through the continuous feed of
sediment-laden flow into an experimental basin. Unlike our
study basin, the channel networks constructed and analyzed in
the work by Yu et al. were distributary. Two critical conditions
proposed for channel formation in that study were that input
turbidity currents were unable to cover the entire area of the fan
at any one time and that the currents contained relatively high
amounts of clay-size material. The former condition resulted in
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flow instabilities which aided channel formation. While input
current widths were less than the basin width, they were also
several orders of magnitude wider than the channels they formed,
and several channels were active at any one time. In addition,
current thickness was over an order of magnitude greater than
the channels that the currents produced. These experimental
conditions were associated with significant overbank sedimenta-
tion. Their visual observations also indicate that a rapid transition
occurs in the steeper source area of the flow, from a nonchannelized
area to an erosional area with channels. While we lack data
defining channel-forming flow properties and our channel net-
work is tributary in structure, the high overbank sedimentation
rates in our study region suggest possible similarities between
aggradational conditions in our field site and the experiments of
Yu et al. (2006): namely that channel-forming flows were wider
and thicker than the channels they formed and that multiple
channels were likely active during any one flow. Below we utilize
our observations to constrain conditions associated with channel
initiation and flow properties.

Channel Initiation

Submarine channels on the continental slope offshore Brunei
Darussalam do not connect to present-day fluvial channels. A
broad continental shelf, 50–70 km wide, separates the present-
day shoreline and the shelf edge. A number of seismic time slices
through the shelf stratigraphy are shown in Figure 16. In these

time slices several features resembling meandering channels are
visible in the shallow stratigraphy. However, none of these
channel bodies are observed within 4–6 km of the shelf edge.
Maps of paleo–shelf edges constructed from seismic and well-log
data indicate that the modern shelf edge equates approximately
to the shelf edge at the end of the Pleistocene (Saller and Blake,
2003; Sandal, 1996). Model predictions performed by Milne and
Mitrovica (2008) place relative sea level during the last glacial
maximum (LGM) at 120 ± 10 m less than the present-day sea level
in our study region. Coupling the model predictions of Milne and
Mitrovica and the paleo–shelf-edge maps of Saller and Blake, a 3–
4 km separation between the shelf edge and the shoreline is
predicted during the last glacial maximum for our study region
(Fig. 3). This suggests that even during the LGM, a time of
significantly low global sea level, a direct channelized link be-
tween submarine and terrestrial channels did not exist.

Several attributes of the present-day submarine channel net-
work also suggest that most sediment transferred to the deep
ocean did not occur through continuous fluvial to submarine
channels. For example, average channel relief increases slowly
from depths below the resolution of the seismic data (~ 5 m) 2 km
downslope of the shelf edge to a stable depth of approximately 50
m at a distance of ~ 8 km downslope of the shelf edge, but
channels are not observed on the seafloor over the first 2 km
downslope of the shelf edge. Coupled to this is a linear increase
in channel width with increases in channel depth (Fig. 6). Paleo-
channel or canyon morphologies of resolvable scale are also not
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observed in seismic cross sections oriented perpendicular to the
present-day submarine-channel network between the shelf edge
and locations of channel heads (Fig. 13). While channel mor-
phologies are not resolved in cross section, some threads of high
seismic amplitude are observed between the seafloor and surface
CD1 in the region encompassed in the first 2 km downslope of the
shelf edge (Fig. 13, lines 1 and 2), particularly under channel C.
These high-amplitude threads are possibly channelized sand
deposits associated with channels linking the fluvial system to
the deep-marine system. The width and thickness of these high-
amplitude features and the lack of resolvable channel morpholo-
gies in seismic cross sections suggests that if continuous fluvial to
submarine channels did exist they had depths less than 5–10 m
over the first 2 km downslope of the shelf edge.

If direct channelized connections did not exist during the
construction of the study channel network, how was sediment
delivered to submarine-channel heads, and what processes re-
sulted in the formation of the submarine-channel network? Pre-
vious studies of other continental-margin submarine channels
have lacked direct links between terrestrial channels and subma-
rine channels. Proposed mechanisms for sediment delivery to
these submarine channels include large storms that evacuate
sediment stored on broad continental shelves to the continental
slope (Puig et al., 2003), cascading of cold, dense shelf waters
(Canals et al., 2006), and breaching events along the shelf edge
(van den Berg et al., 2002). Our observations and measurements
of deposit thickness and channel relief as a function of distance
from the shelf edge suggest that submarine channels in our study
region formed as a result of sediment deposition from turbidity
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currents that initiated at the shelf edge, but the exact mechanism
for initiation at this site is still unknown. All channels start at a
similar distance, about 1 km downslope from the maximum
downslope surface gradient, or about 2 km from the shelf edge
(Fig. 8). This observation suggests a link between channel initia-
tion and acceleration of currents over the shelf edge. Interesting
recent studies by Izumi (2004) and Hall et al., (2008) found that
flow thickness strongly influences channel spacing under net-
erosional currents. A similar control on channel spacing might
also exist in net-aggradational channels. The average channel
spacing in the area near the shelf edge is approximately 1400 m.
The recent theoretical work of Hall et al. (2008) indicates that
submarine channels and gullies formed by sheet flows should
have a spacing on the order of 25 times the thickness of turbidity
currents. This would suggest a typical flow thickness of the
order of 50 m for the channel-forming flows in our study region.
Finally, measurements of channel width and relief are strongly
correlated (Fig. 5). The best-fit trend suggests a width for chan-
nels at initiation (channel depth = 0) of 180 ± 50 m. This minimum
width might be correlated to the scale of flow instabilities within
sheet flows that are responsible for the initiation of channels. A
control on channel width at channel initiation, similar to the control
of channel spacing proposed by Izumi (2004) for currents initiating
as sheet flows, might also exist and presents a future line of study.

If continuous fluvial to submarine channels did exist, but are
unresolved in the first 2 km downslope of the shelf edge due to the
seismic resolution of our data, it suggests that paleo-channels had
reliefs less than ~ 10 m in this region. The depositional patterns on
this margin also suggest that if continuous links did exist they
were not effective at confining flows in the region just downslope
of the shelf edge inasmuch as both channelized and unchannelized
zones in this region have high deposition rates relative to the rest
of the channel network.

Controls on Local Deposition

We use maps of recent deposition on the Brunei margin to
quantify the correlation of three factors on deposit thickness:
distance from the shelf edge, gradient of the depositional sur-
face, and distance from a channel. The trends that we present in
Figure 15 utilize data from both unconfined and channelized
regions and thus allow us to access the importance of each factor
as it relates to slope aggradation in the study area. As might be
expected for net-depositional turbidity currents, we observe an
initial decrease in mean deposit thickness with distance from
the shelf edge. This decrease occurs between 4 and 8 km from the
shelf edge, with a corresponding decrease in average deposit
thickness from 225 m to 80 m. With additional distance from the
shelf edge, mean deposit thickness remains approximately con-
stant. Interestingly, we observe the opposite trend in mean
channel relief with distance from the shelf edge. Between 4 to 8
km from the shelf edge the mean channel relief increases from
20 to 50 m and then remains approximately constant with
further distance down slope. This trend is similar to the change
in the coefficient of variation of deposit thickness as a function
of distance from the shelf edge. To examine the correlation
between mean channel relief and mean deposit thickness, we
cross-plot these two parameters for data pairs that share the
same distance from the shelf edge (Fig. 17). We note a strong
anti-correlation between channel reliefs of 15 m to 55 m. We
hypothesize that as currents construct deep channels the lateral
confinement of turbidity currents increases. Presumably the
spatial trends observed in the data also translate temporally. So,
with time, levee aggradation increases channel relief and flow
confinement. This lateral confinement focuses flow along pre-

ferred transport directions (i.e., following channel centerlines),
which in turn increases the transport efficiency of currents.

Interestingly, we observe no trend in deposit thickness as a
function of maximum surface gradient (Fig. 15C). Local regions
of high slope associated with the failure scarp on surface CD1
have clearly affected depositional patterns on the margin (Figs.
11B, 12). However, in this study region the effect of surface
gradient is not as strong as other factors (Fig. 15C).

The collapse of data on deposit thickness as a function of
distance from a channel thalweg results in a trendline that is
analogous to a mean channel–levee profile oriented perpendicu-
lar to a channel centerline. As such, this plot allows us to define
and characterize three depositional zones within the network.
The first zone makes up the channels themselves. Average chan-
nel half-width is 125 m, and over this distance deposit thickness
increases from 72 m at the thalweg to 122 m at the levee crest (Fig.
15D). The second zone defines the average levee form and runs
between 125 m to 2200 m from a channel centerline. Over this
lateral distance, sediment thickness drops from 122 m at the levee
crest to 55 m at its distal termination. It is not obvious where to
place the distal end of the levee on the basis of mean thickness
only. We refined the location by taking advantage of the spatial
structure in the coefficient of variation for deposit thickness.
Coefficient of variation maintains an approximately constant,
relatively large value for a distance up to 2200 m from a channel
center. After this point values for CV systematically decrease
with increasing separation from a channel. We take the transition
from a roughly constant CV to a continuously decreasing one as
defining the boundary between the levee and the background
overbank surface. We expect a greater variation in depositional
thickness to be associated with focused levee deposition versus
the background sedimentation building the regional overbank
surface. Sedimentation on the distal overbank has produced a
deposit with a nearly constant thickness of 55 m. With the length
scales associated with each depositional zone defined, we have
created a deposit facies map for our study region that delineates
channel, levee, and distal overbank facies (Fig. 18).

Analysis of the three depositional zones reveals two system
properties that are particularly relevant to inferring behavior of
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the evolving network. First, sedimentation in channel thalwegs is
only somewhat greater than the background deposition associ-
ated with the far-field overbank surface, 72 m versus 55 m (a ratio
of 1.3), respectively. These nearly equal values of in-channel
versus overbank deposit thickness point to development of chan-
nels that are laterally stable and thus are not rapidly becoming
superelevated relative to their overbank surface. This slow devel-
opment of superelevation suggests that the channels are not
prone to frequent avulsion (Mohrig et al., 2000). Second, the
characteristic half-width of the levee package is 8.4 times the
average channel width (w = 250 m) (Fig. 15D). Because most
channels in our study network are separated by less than 2 km
from their closest neighboring channel (Fig. 18), this levee dis-
tance suggests that some fraction of overbanking flow from
currents moving down one channel is likely to reenter an inactive
or neighboring channel and continue to move downslope.

Our observations suggest that the two critical factors control-
ling deposit thickness in the study region are degree of current

confinement in channels flanked by prominent levees and dis-
tance from a channel thalweg. As the last step in this analysis we
quantify the volume of sediment stored in the flow-confining
levees relative to both the channel thalweg and the distal overbank.
We accomplish this by first calculating the number of grid nodes
located between 0 and 125 m (channel nodes), between 125 and
2200 m (levee nodes), and between 2200 and 4500 m (distal
overbank nodes) from a channel thalweg. These values are then
multiplied by the mean deposit thickness within each deposi-
tional zone. We find that 85% of the sediment recently deposited
on the Brunei Darussalam margin is stored within channel levee
nodes while 11% is stored in channel deposit nodes and 4% is
stored in the distal overbank nodes (Table 1). In this network the
approximate amount of sediment stored in levees is eight times
greater than the amount of sediment stored in channel deposits.

Our findings indicate that construction of aggradational net-
works is largely tied to weakly channelized flows which are free
to overbank into unconfined regions. In the most proximal area
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immediately below the shelf edge, flows are probably wide and
too weak to develop channels. These flows may be plunging river
plumes off the paleo–Champion delta, or the result of dense
suspensions resulting from wave-induced stresses near the delta
front or upper slope. As they accelerate downslope, flows begin
to focus at sites where net deposition is less than in adjacent areas,
forming aggradational channels. These flows then construct levees,
which eventually become high enough to partially or completely
confine flows within channels. As flows progressively become
more confined through levee construction, local deposition rates
decrease as sediment is funneled farther downstream before
deposition can occur. This sedimentation pattern, which is asso-
ciated with partially channelized flows, appears to be superim-
posed on a regional depositional pattern associated with hemipe-
lagic sedimentation. The signal of the hemipelagic sedimentation
is stored in the volume of sediment recorded in the distal overbank
deposits.

Recent laboratory experiments reported by Mohrig and Buttles
(2007) document overbank deposition resulting from flows that
were partially guided by a channel. In their experiments the ratio
of mean channel-deposit thickness to mean overbank-deposit
thickness was monitored for a series of flows that had different
ratios of current thickness to channel relief. We found that the
ratio of mean channel-deposit thickness to mean overbank-de-
posit thickness for the Brunei network was 1.3. This ratio corre-
sponds to flows in excess of three times channel relief in the
Mohrig and Buttles (2007) experiments. Given a typical channel
relief in our study region of 50 m, this suggests flow thicknesses
on the order of 150 m. This value of flow thickness is significantly
higher than the flow thickness estimated from the spacing of
channel heads. We propose that the difference in these thickness
estimates is partially related to the funneling of sheet flows into
channels. The estimate of current thickness from the spacing of
channel heads likely reflects the thickness of unconfined sheet
flows. A thickening of turbidity currents is likely associated with
the funneling of these sheet flows into channels as currents move
downslope. This second estimate of flow thickness supports our
assumption that the Brunei channel network was constructed by
flows that were only partially confined, promoting high overbank
deposition rates. It is also worth noting that the suggested thick-
ening of flows in this tributary system is fundamentally different
from the downslope evolution of flows in distributary networks
(Normark et al., 1979; Pirmez and Flood, 1995; Yu et al., 2006),
where channel relief and deposit thickness decreases with dis-
tance from the source of the current. The model of slope evolution
for our study area is associated with deposition primarily in the
form of levees (Fig. 19). As such, the construction of seascape
evolution models for margins dominated by aggradational chan-
nels will require increased study into the fluid dynamics of
overbanking turbidity currents and levee morphodynamics.

The proposed model for sediment delivery to the Brunei
margin via sheet-flow turbidity currents is significantly different
from the evolution of shelf-edge deltas and submarine channels

with continuous channel features extending from the terrestrial
region into the deep ocean. For example, Sylvester et al. (this
volume) used a high-resolution 3D seismic volume to study the
seismic stratigraphy of the Pleistocene Fuji–Einstein system,
which consists of a shelf-edge delta that is directly linked to and
coeval with two submarine channel–levee systems. Unlike the
network offshore Brunei, the Fuji–Einstein channels are single
threaded and are not tributary in structure. In addition, unlike the
net-aggradational Brunei channel system these submarine chan-
nels link to the shelf edge through erosional channel conduits.
Interestingly, though, the development and evolution of the Fuji–
Einstein system was associated with a significant amount of
deposition in the overbank environment, which resulted in thick
aggradational levee packages and sediment waves. It appears
that even in systems with continuous terrestrial–submarine chan-
nels, turbidity currents are significantly thicker than the channels
which guide them and thus result in high overbank deposition
rates.

Comparing Terrestrial and Submarine Channel Networks

How does the morphology of this submarine tributary chan-
nel network compare to terrestrial tributary networks? We ob-
served scaling exponents which relate channel relief and width to
drainage-basin area that are significantly less than exponents
describing terrestrial channel networks (Fig. 7). In terrestrial
networks, the scaling of channel width and relief to drainage-
basin area is often used as a proxy for how these variables scale
as a function of water discharge (Howard, 1994; Whipple, 2004).
The physical explanation for this correlation lies in the method of
fluid input to terrestrial channel networks. If precipitation is
independent of channel network pattern, it follows that rainfall
capture increases more or less linearly with drainage-basin area.
Overland and shallow subsurface flow follows local paths of
steepest descent. As a result, contributing upslope area at any
point in a channel network is a proxy for net fluid discharge. The
observed scaling exponents of submarine channels in our study
region indicate that channel width and relief increase more
slowly for a given increase in drainage-basin area compared to
terrestrial networks. In addition to the low value of the scaling
exponents relative to terrestrial networks, the correlation coeffi-
cient of the scaling exponents is quite low. The weak coupling
between channel dimensions and drainage-basin area in our
study likely indicates that drainage-basin area is a poor proxy for
flow discharge through submarine channels. This is likely due to
the method of flow input to submarine systems. In the submarine
environment discharge is determined primarily by network
boundary conditions at the upslope perimeter of the drainage
basin. While channel width and relief do not scale to drainage-
basin area in a fashion similar to terrestrial networks, several
authors have observed scaling exponents between channel length
and channel slope as functions of drainage-basin area that are
similar to terrestrial environments (Mitchell, 2005; Pratson and
Ryan, 1996; Straub et al., 2007). Contrary to the findings in this
work, Mitchell (2005) theorized that similar scaling exponents
relating channel slope to basin area in submarine and terrestrial
basins indicates that drainage-basin area can in fact be thought of
as a proxy for flow discharge through submarine channels. We
believe that our findings support the suggestion of Straub et al.
(2007) that scaling exponents relating channel length and slope to
drainage-basin area are the result of geometric inevitability and
not to physical processes.

All terrestrial tributary channel networks are net erosional
features over some portion of their drainage-basin area (Crosby
and Whipple, 2006; Snyder et al., 2000; Willgoose et al., 1991).

17 km3 of slope deposit % of total % of total deposit
(area: 192 km2) area volume
Channel bottom 11 11

5818eeveL
Distal Overbank 8 4

TABLE 1.—Data defining area and volume of sediment
contained within channel deposits, levee deposits,

and distal overbank deposits.
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Commonly, first-order channels are the most erosional portion
of terrestrial tributary channel networks. Additionally, in most
terrestrial networks a significant difference in channel slope
exists between the first-order tributary channels and the net-
work trunk channels. These differences in slope often exceed an
order of magnitude where the low-order streams are often
incisional and strongly coupled to their surrounding hillslopes
(Willgoose et al., 1991). As such, these rivers strongly influence
their local and regional gradient fields. Further, the strongly
incisional nature of many terrestrial tributary systems does not
allow flows to frequently overbank onto flood plains. All of the
quantitative characteristics of the offshore Brunei tributary
channel network that we have measured differ significantly
from terrestrial networks. For example, the low-order tributar-
ies of the Brunei network are only slightly steeper than their
trunk channels (0.07 vs. 0.05). In addition, unlike terrestrial
tributary networks, all parts of this network are net deposi-
tional, with the thickest deposits focused in and around the first-
order channels. Unlike terrestrial channel systems, it is difficult
to quantify the importance of channel-forming flow events to
the gradient field of the Brunei margin. The current downslope
gradient of the continental margin in our study region is similar
to the downslope gradient of the slide planes imaged in the
shallow subsurface (Fig. 10). Evidence from this and several
other studies indicates that the Brunei margin frequently expe-
riences mass-failure events that clear portions of the continental
slope of channels (Demyttenaere et al., 2000; Gee et al., 2007).
Clearly, the release of mass-failure events on this margin plays

a critical role in setting the slope gradient. However, conditions
associated with the release of these mass-failure events might be
influenced by the stratigraphy of deposits laid down during
channelized flow events. Nonetheless it appears that identifying
the influence of channelized flows on the gradient field of conti-
nental slopes is more difficult than in terrestrial environments.

CONCLUSIONS

Maps of the present-day seafloor and several subsurface
stratigraphic horizons indicate that the Brunei continental mar-
gin experienced several large mass-wasting events followed by a
change to net depositional conditions associated with the con-
struction of a tributary submarine channel network. We used a
map of deposit thickness associated with the construction of this
network to quantify depositional trends of both the channelized
and unconfined regions encompassed by this network.

The degree of turbidity-current confinement in deep channels
and distance from a channel thalweg are the two strongest
controls on slope deposition patterns. Trends describing mean
deposit thickness and mean channel relief as functions of distance
from the shelf edge are anti-correlated, indicating that current
confinement in channels influences deposition rates. Data defin-
ing mean deposit thickness as a function of distance from a
channel thalweg was used to quantify the volume of sediment
associated with channels and levees in the network. We found
that 85% of the sediment associated with this network resides in
levees compared to 11% in channel deposits. These observations

FIG. 19.—Conceptual model for processes responsible for channel formation and resulting flow–topography interactions on the
Brunei Darussalam margin. Thin sheet flows initiate at the shelf edge and rapidly accelerate due to locally high surface gradients
(Line A). Rapid acceleration of currents and flow instabilities results in spatially variable deposition rates and “proto-channels”
(Line B). “Proto-channels” promote lateral confinement of flow along preferred transport directions, which aids construction of
deep channels through levee deposition. This in turn increases the transport efficiency of a current and decreases deposition rates.
This flow funneling also results in downslope thickening of currents (Line C).
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suggest that this channel network offshore Brunei was largely
constructed by flow events that were thicker than the channels
they constructed and thus only marginally channelized. This
style of channel evolution is fundamentally different from most
terrestrial tributary channel networks, which are net erosional
features.
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