KRISTIN S. MILLER, Ph.D.

Tulane University	
Department of Biomedical Engineering	Cell Phone: 713-503-4878
500 Lindy Boggs Center	Email: Kmille11@tulane.edu
New Orleans, LA 70118	Email: Krismiller17@gmail.com

EDUCATION

Yale University	New Haven, CT
NIH T32 Postdoctoral Fellow, Biomedical Engineering	7/2012 - 7/2014
Advisor: Jay D. Humphrey, Ph.D.	
University of Pennsylvania	Philadelphia, PA
Ph.D., Bioengineering, Advisor: Louis J. Soslowsky, Ph.D.	August 2012
Thesis: Collagen Fiber Re-Alignment and Uncrimping in Respon.	se to Loading: Determining
Structure-Function Relationships Using a Developmental Tendor	1 Mouse Model
Texas A&M University	College Station, TX
B.S., Biomedical Engineering. Magna Cum Laude	May 2007

HONORS AND AWARDS

- University of Pennsylvania Bioengineering Symposium Poster Competition, 1st Place, 2012
- Penn Center for Musculoskeletal Disorders Symposium Poster Competition, 3rd Place, 2011
- Penn Center for Musculoskeletal Disorders Symposium Poster Competition, 1st Place, 2010
- ASME Summer Bioengineering Conference Masters Poster Competition, 1st Place, 2010
- Honor Societies: Tau Beta Phi, Phi Kappa Phi, Alpha Eta Mu Beta, Golden Key

ARCHIVED JOURNAL PUBLICATIONS

Published

- Kristin S. Miller, William A. Hyman. A Comprehensive Guide to the Quality System Regulation Preamble: A thorough understanding of FDA quality system regulation is crucial for medical OEMs. Medical Device and Diagnostic Industry. January 2008.
- 2. Spencer P. Lake, **Kristin S. Miller**, Dawn M. Elliott, Louis J. Soslowsky: Effect of fiber distribution and realignment on the nonlinear and inhomogeneous mechanical properties of human supraspinatus tendon under longitudinal tensile loading. Journal of Orthopaedic Research 27(12):1596-1602. 2009.
- 3. Spencer P. Lake, **Kristin S. Miller**, Dawn M. Elliott, Louis J. Soslowsky: Tensile properties and fiber alignment of human supraspinatus tendon in the transverse direction demonstrate inhomogeneous, nonlinearity, and regional anisotropy. Journal of Biomechanics 43(3):727-32. 2010.
- Kristin S. Miller, Lena Edelstein, Brianne K. Connizzo, Louis J. Soslowsky: Effect of Preconditioning and Stress Relaxation on Local Collagen Fiber Re-Alignment: Inhomogeneous Properties of Rat Supraspinatus Tendon. Journal of Biomechanical Engineering 134(13):031007. 2012.
- Stephen J. Thomas, Kristin S. Miller, Louis J. Soslowsky: The Upper Band of the Subscapularis Tendon in the Rat has Inferior Mechanical Properties. Journal of Shoulder & Elbow Surgery 21(12):1687-93. 2012.

- 6. **Kristin S. Miller,** Brianne K. Connizzo, Louis J. Soslowsky: Collagen Fiber Re-Alignment in a Neonatal Developmental Mouse Supraspinatus Tendon Model. Annals of Biomedical Engineering 40(5):1102-1110. 2012.
- David P. Beason, Andrew F. Kuntz, Jason E. Hsu, Kristin S. Miller, Louis J. Soslowsky: Development and Evaluation of Multiple Tendon Injury Models in the Mouse. Journal of Biomechanics 45(8):1550-1553. 2012.
- Kristin S. Miller, Brianne K. Connizzo, Elizabeth Feeney, Jennica J. Tucker, Louis J. Soslowsky: Examining Difference in Local Collagen Fiber Crimp Frequency Throughout Mechanical Testing in a Developmental Mouse Supraspinatus Tendon Model. Journal of Biomechanical Engineering 134(4):041004. 2012.
- 9. **Kristin S. Miller**, Elizabeth Feeney, Brianne K. Connizzo, Louis J. Soslowsky: Characterizing Local Collagen Fiber Re-Alignment and Crimp Behavior Throughout Mechanical Testing in a Mature Mouse Supraspinatus Tendon Model. Journal of Biomechanics 45(12):2061-2065. 2012.
- Kristin S. Miller, Yong-Ung Lee, Yuji Naito, Christopher K. Breuer, Jay D. Humphrey: Computational Model of the In Vivo Development of a Tissue Engineered Vein from an Implanted Polymeric Construct. Journal of Biomechanics 47(9):2080-2087. 2014.
- Brooks V. Udelsman, Ramak Khosravi, Kristin S. Miller, Ethan W. Dean, Matthew R. Bersi, Kevin Rocco, Tai Yi, Jay D. Humphrey, Christopher K. Breuer: Characterization of Evolving Biomechanical Properties of Tissue Engineered Vascular Grafts in the Arterial Circulation. Journal of Biomechanics 47(9):2070-2079. 2014.
- 12. **Kristin S. Miller,** Ramak Khosravi, Christopher K. Breuer, Jay D. Humphrey: A Hypothesis-Driven Parametric Study of Effects of Polymeric Scaffold Properties on Tissue Engineered Neovessel Formation. Acta Biomaterialia 11(1):283-294. 2015.
- Thomas A. Sorrentino, Lara Fourman, Jacopo Ferruzzi, Kristin S. Miller, Jay D. Humphrey, Sara Roccbianca: Local Versus Global Mechanical Effects of Glycosaminoglycans in Carotid Arteries. ASME J Biomech Eng 137(4):041008. 2015.
- Ramak Khosravi, Kristin S. Miller, Cameron A. Best, Yushane C. Shih, Yong-Ung Lee, Tai Yi, Christopher K. Breuer, Jay D. Humphrey: Biomechanical Diversity Despite Mechanobiological Stability in Tissue Engineered Vascular Grafts Two Years Post-Implantation. Tissue Eng A 21(9-10):1529-38. 2015.
- 15. Liu Liu, Shreya Kashyap, Brennah Murphy, Rebecca Budish, Emma H. Trimmer, Margaret Zimmerman, Kristin S. Miller, Mark C. Chappell, Sarah H. Lindsey: Activation of the G protein-coupled estrogen receptor ameliorates salt-induced vascular remodeling. J Pharma Exp Thera (In review).

BOOK CHAPTERS

 Kristin S. Miller, Jason E. Hsu, Louis J. Soslowsky. (2011) Materials in Tendon and Ligament Repair. IN:P. Ducheyne, K.E. Healy, D.W. Hutmacher, D.W. Grainger, C.J. Kirpatrick (eds.) Comprehensive Biomaterials, vol. 6, pp.257-279 Elsevier.

CONFERENCE PROCEEDINGS/ABSTRACTS

- Cody Schoener, Kristin S. Miller, Matthew Westfall, Neil Markwardt: Exercise System for the Crew Exploration Vehicle. Houston Society for Engineering Medicine and Biology 2007: 14th Annual Houston Conference. February 8-9, 2007.
- 2. Spencer P. Lake, **Kristin S. Miller**, Louis J. Soslowsky, Dawn M. Elliott: Fiber Alignment under Load Contributes to Human Supraspinatus Tendon Nonlinearity and Inhomogeneity, Trans Orthop Res Soc 34: 2009.

- 3. Spencer P. Lake, **Kristin S. Miller**, Jennifer A. Kadlowec, Dawn M. Elliott, Louis J. Soslowsky: Inhomogeneous and Nonlinear Transverse Tensile Properties and Fiber Alignment of Human Supraspinatus Tendon. 2009. ASME Summer Bioengineering Conference, Lake Tahoe, CA.
- 4. Jennifer A. Kadlowec, Spencer P. Lake, **Kristin S. Miller**, Louis J. Soslowsky, Dawn M. Elliott: A Hyperelastic Model with Distributed Fibers to Describe Human Supraspinatus Tendon Tensile Mechanics. 2009. ASME Summer Bioengineering Conference, Lake Tahoe, CA.
- Kristin S. Miller, Lena Edelstein, Louis J. Soslowsky: Effect of Preconditioning on Collagen Fiber Recruitment: Inhomogeneous Properties of Rat Supraspinatus Tendon. 2010. ASME Summer Bioengineering Conference, Naples, FL.
- Kristin S. Miller, Stephen J. Thomas, Nicholas A. Trasolini, Louis J. Soslowsky: The Upper Band of the Subscapularis Tendon in the Rat has Inferior Mechanical Properties, Trans Orthop Res Soc 36: 2011.
- David P. Beason, Andrew F. Kuntz, Jason E. Hsu, Kristin S. Miller, Louis J. Soslowsky: Development and Evaluation of Multiple Tendon Injury Models in the Mouse, Trans Orthop Res Soc 36:919, 2011.
- Kristin S. Miller, Brianne K. Connizzo, Jennica J. Tucker, Elizabeth Feeney, Nicholas A. Trasolini, Louis J. Soslowsky: Local Differences in Collagen Fiber Crimp Throughout Mechnical Testing in a Mouse Supraspinatus Tendon Model, Trans Orthop Res Soc, 37:1290, 2012
- Kristin S. Miller, Brianne K. Connizzo, Jennica J. Tucker, Louis J. Soslowsky: Collagen Fiber Re-Alignment in a Neonatal Developmental Mouse Supraspinatus Tendon Model, Trans Orthop Res Soc, 37:1289, 2012
- 10. **Kristin S. Miller**, Brianne K. Connizzo, Elizabeth Feeney, Louis J. Soslowsky: Collagen Fiber Re-Alignment and Mechanical Properties in a Mouse Supraspinatus Tendon Model: Examining Changes with Age and Location. 2012, ASME Summer Bioengineering Conference, Fajardo, Puerto Rico.
- Chi Liu, Chung Chang, Mitchel R. Stacy, Kristin S. Miller, Alda Bregasi, Donald Dione, Zhenwu Zhang, Albert Sinusas: Feasibility of Quantifying Intramyocardial Blood Volume using SPECT/CT. 2013, Society of Nuclear Medicine and Molecular Imaging, Vancouver, BC, Canada.
- 12. Brooks V. Udelsman, Ramak Khosravi, Ethan W. Dean, Kevin Rocco, **Kristin S. Miller**, Tai Yi, Jay Humphrey, Christopher K. Breuer: Characterization of the Biomechanical Properties of Tissue Engineered Vascular Grafts Implanted in the Arterial Circulation. 2013, New England Surgical Society.
- 13. Kristin S. Miller, Brooks V. Udelsman, Yong-Ung Lee, Yuji Naito, Christopher K. Breuer, Jay D. Humphrey: Computational Growth and Remodeling Model for Evolving Tissue Engineered Vascular Grafts in the Venous Circulation. 2013, ASME/FDA Annual Frontiers in Medical Devices, Applications of Computer Modeling and Simulation, Washington, DC.
- 14. **Kristin S. Miller,** Ramak Khosravi, Christopher K. Breuer, Jay D. Humphrey: Evaluating the Growth Potential of Tissue Engineered Vascular Grafts: Role of Vasoactivity and Functional Endothelium to Altered Mechanical Stimuli. 2015, Biomedical Engineering Society, Cell Molecular Bioengineering Special Interest Group, St Thomas, USVI.

Invited

- 15. **Kristin S. Miller,** Christopher K. Breuer, Jay D. Humphrey. Hypothesis-Driven Parametric Study to Demonstrate the Predictive Capability of a Computational Model of In Vivo Tissue Engineered Vascular Grafts. 2014, World Congress of Biomechanics, Boston, MA.
- 16. Ramak Khosravi, **Kristin S. Miller**, Cameron A. Best, Yushane C. Shih, Yong-Ung Lee, Tai Yi, Christopher K. Biomechanical Characterization of Tissue-Engineered Vascular Grafts: Using a

Murine Model to Understand Venous Adaptations and Remodeling. 2014, World Congress of Biomechanics, Boston, MA.

SELECTED PRESENTATIONS/SEMINARS

- University of Pennsylvania, Orthopaedic Bioengineering Seminar 5/2008, 8/2009, 8/2010
- University of Pennsylvania, Leadership Techniques and Training 9/2010
- Yale University, Translational Research Imaging Center Seminar 8/2012,1/2013,8/2013,5/2014
- Tulane University, Pharmacology 11/2014 •

Invited

- Messiah College, Department of Engineering 1/2014
- Virginia Tech, Department of Engineering Science and Mechanics 2/2014
- Georgia Tech, School of Mechanical Engineering 2/2014 •
- Tulane University, Department of Biomedical Engineering 3/2014 •
- Baylor University, Department of Mechanical Engineering 3/2014 •
- University of North Carolina Charlotte, Department of Mechanical Engineering -3/2014•
- University of Arkansas, Department of Biomedical Engineering 4/2014 •

TEACHING EXPERIENCE/TRAINING

Biofluid Mechanics, BMEN 3440, Tulane University Fall 2014 **Guest Lectures**

- BMEN 2310, Tulane University Fall 2014 •
- BMEN 4031, Tulane University Fall 2014
- BENG 353, Yale University Fall 2013

Yale Scientific Teaching Fellows, Yale University

- Training in scientific teaching, active learning, assessment, diversity, backwards course design, and choosing teaching methods based on evidence
- Developed teaching materials that address challenging teaching issues in undergraduate science courses and engage students in thinking and behaving like scientists
- Created resources to highlight diversity in science

Department of Bioengineering, University of Pennsylvania 2010.2011

Teaching Assistant, Engineering Principles of Human Physiology

Held office hours, advised students and graded course work and exams ٠

MENTORING & ADVISING

- 1. Lena Edelstein Laboratory technician, University of Pennsylvania Effect of preconditioning and stress relaxation on collagen fiber re-alignment of rat supraspinatus tendon
- 2. Nicholas Trasolini Undergraduate student, University of Pennsylvania Quantifying collagen fiber crimp in situ in a developmental tendon mouse model
- 3. Steve Thomas Postdoctoral Fellow, University of Pennsylvania Evaluating mechanical properties and collagen fiber re-alignment in rat subscapularis tendon
- 4. Jennica Tucker Laboratory technician, University of Pennsylvania

Fall 2013

Quantifying collagen fiber crimp throughout mechanical testing in murine tendon model

- 5. Brianne Connizzo Graduate student, University of Pennsylvania Collagen Fiber Re-Alignment and Uncrimping in Response to Loading in murine models
- 6. Brian Lee Undergraduate student, University of Pennsylvania Comparison of collagen fiber alignment measurements during mechanical testing: Ultrasound and cross-polarizer; Crimp quantification program
- Katie Reuther Graduate student, University of Pennsylvania Effect of overuse activity following an isolated supraspinatus tendon tear on adjacent intact tendons in rat model
- 8. Elizabeth Feeney Undergraduate student, University of Pennsylvania Collagen Fiber Re-Alignment and Uncrimping in Response to Loading in murine models
- 9. Chris White Visiting medical student, Yale University Scanning electron microscopy to examine elastic fibers in response to hypo-osmotic swelling
- 10. Brooks Udelsman Medical student, Yale University Characterization of Evolving Biomechanical Properties of Tissue Engineered Vascular Grafts in the Arterial Circulation
- 11. Ramak Khosravi MD/Ph.D. student, Yale University Characterization of Evolving Biomechanical Properties of Tissue Engineered Vascular Grafts in the Arterial Circulation
- 12. Sisira Gorthala Undergraduate student, Yale University Injection of alginate hydrogel to reverse left ventricular remodeling post myocardial infarction in a porcine model
- 13. Jonas Schwan Graduate student, Yale University Role of matrix metalloproteinases on left ventricular remodeling post myocardial infarction and correlations to mechanical function
- 14. Lara Fourman Undergraduate student, Yale University Role of hypo-osmotic swelling on carotid artery elastic lamaelle structure
- 15. Celestine Shih Medical student, Yale University Effect of polymer physiochemical properties on the inflammatory-mediated remodeling of tissue engineered vascular grafts
- 16. Derek Bivona Undergraduate student, Tulane University *Residual strain in the women's reproductive system*
- 17. Ben Sonin Undergraduate student, Tulane University An efficient framework for optimization and parameter sensitivity analysis in growth and remodeling computations of neovessel formation from an implanted polymeric construct
- 18. Katy Robison Undergraduate student, Tulane University Characterization of Evolving Biomechanical Properties of Murine Vagina Postpartum
- 19. Victoria Morris Undergraduate student, Tulane University Characterization of Evolving Biomechanical Properties of Murine Cervix during Normal and Abnormal Parturition
- 20. Jonathan Nguyen Undergraduate student, Tulane University Construction of a planar biaxial mechanical testing device for vaginal tissue: Assessment of anisotropy in pelvic organ prolapse
- 21. Taylor McCrady Undergraduate student, Tulane University Sex-differences in infraspinatus tendon in overhead throwing motion athletes

Kristin S. Miller 5

22. Kat Brocker – Undergraduate student, Tulane University Histomorphometric analysis of murine cervix during estrus cycle

SERVICE

Manuscript Reviewer

- Annals of Biomedical Engineering
- Biomechanics and Modeling in Mechanobiology
- International Journal of Plasticity
- Journal of Biomechanics
- Journal of Biomechanical Engineering

Society Memberships

- American Society of Mechanical Engineers
- Biomedical Engineering Society
- Sigma Xi Research Society