Linear and Nonlinear Rogue Wave Statistics in the Presence of Random Currents

Lev Kaplan
(Tulane University)

In collaboration with
Alex Dahlen and Eric Heller (Harvard)
Linghang Ying and Zhouheng Zhuang (Tulane)

October 11, 2011
Talk Outline

- Linear rogue wave formation
 - Mechanism: Refraction from current eddies
 - Combining refraction with stochasticity
 - The “freak index”
 - Implications for extreme wave statistics
- Introducing wave nonlinearity
 - Wave statistics in 4th order nonlinear equation
 - Scaling with parameters describing sea state
- Can linear and nonlinear effects work in concert?
Focus on linear **refraction** of incoming wave (velocity \(\nu \)) by **random current eddies** (current speed \(u_{\text{rms}} \ll \nu \))

- For deep water surface gravity waves with current

\[
\omega(\vec{r}, \vec{k}) = \sqrt{gk + \ddot{u}(\vec{r}) \cdot \vec{k}}
\]

\[
\frac{dk_x}{dt} = - \frac{\partial \omega}{\partial x}
\]

\[
\frac{dx}{dt} = \frac{\partial \omega}{\partial k_x}
\]

- Current correlated on scale \(\xi \) (typical eddy size)

- Ray picture justified if \(k\xi \gg l \)
How caustics form: refraction from current eddies

- Parallel incoming rays encountering pair of eddies
- Effect similar to potential dip in particle mechanics
- **Focusing** when all paths in a given neighborhood coalesce at a single point (caustic), producing infinite ray density
- Different groups of paths coalesce at different points ("bad lens" analogy)
How caustics form: refraction from current eddies

- Generic result: “cusp” singularity followed by two lines of “fold” caustics
- At each y after cusp singularity, we have infinite density at some values of x

Phase space picture
Refraction from weak, random currents

- First singularities form after \(d \propto \xi \left(\frac{u_{\text{rms}}}{v} \right)^{-2/3} \gg \xi \)
- Further evolution: exponential proliferation of caustics
 - Tendrils decorate original branches
 - Branch statistics described by single distance scale \(d \)
Refraction from weak, random currents

- Of course, singularities washed out on wavelength scale

- Qualitative structure independent of
 - dispersion relation (e.g. $\omega \sim k^2$ for Schrödinger vs. $\omega \sim k^{1/2}$ for ocean waves)
 - details of random current field

- Can calculate distribution of branch strengths, fall off with distance, etc (LK, PRL 2002)
Analogies with other physical systems

- Electron flow in nanostructures (10^{-6} m)
- Microwave resonators, Stöckmann group (1 m)
- Long-range ocean acoustics, Tomsovic et al (20 km)
- Twinkling of starlight, Berry (2000 km)
- Gravitational lensing, Tyson (10^9 light years)

Microwave scattering experiments

Höhmann et al (PRL 2010)

Experimentally observed branched flow

Ray simulation
Branching pattern for tsunami waves
Problems with refraction picture of rogue waves

- Assumes single-wavelength and unidirectional initial conditions, which are unrealistic and unstable (Dysthe)
 - Singularities washed out only on wavelength scale
 - Predicts regular sequence of extreme waves *every time*
 - No predictions for actual wave heights or probabilities

- Solution: replace incoming plane wave with random initial spectrum
 - Finite range of wavelengths and directions
Smearing of caustics for stochastic incoming sea

- Singularities washed out by randomness in initial conditions: Δk
- “Hot spots” of enhanced average energy density remain as reminders of where caustics would have been
Smearing of caustics for stochastic incoming sea

Competing effects of focusing and initial stochasticity:

\[\Delta k_x = \text{initial wave vector spread} \]

\[\delta k_x = \text{wave vector change due to refraction} \]
Quantifying residual effect of caustics: the “freak index”

- Define freak index \(\gamma = \frac{\delta k_x}{\Delta k_x} \)
- Equivalently \(\gamma = \frac{\delta \theta}{\Delta \theta} \)
 - \(\Delta \theta = \frac{\Delta k_x}{k} = \) initial directional spread
 - \(\delta \theta = \) typical deflection before formation of first cusp
 \(~ (u_{\text{rms}} / v)^{2/3} \sim \xi / d \)
- Most dangerous: well-collimated sea impinging on strong random current field \((\gamma \geq 1) \)
- Hot spots corresponding to \(\text{first} \) smooth cusps have highest energy density
 \[\Delta \theta(y) \approx \Delta \theta \sqrt{1 + \gamma^2 (y / d)} \Rightarrow \gamma(y) \approx \sqrt{d / y} \]
Typical ray calculation for ocean waves

$\Delta \theta = 10^\circ$

$\Delta \theta = 20^\circ$
Implications for Rogue Wave Statistics

- Simulations (using Schrodinger equation): long-time average and regions of extreme events

Average

$\gamma \approx 2$

$1 \text{ SWH} = \text{significant wave height} \approx 4\sigma \text{ crest to trough}$

$>3 \text{ SWH}$

$>2.2 \text{ SWH}$
Calculation: Rogue Waves

No currents: Rayleigh height distribution (random superposition of waves) \(P(h) = \left(\frac{h}{\sigma}\right) \exp(-h^2 / 2\sigma^2) \)

With currents: Superpose *locally Gaussian* wave statistics on pattern of “hot/cold spots” caused by refraction

- Local height distribution \(P_l(h) = \left(\frac{h}{\sqrt{I}\sigma}\right) \exp(-h^2 / 2I\sigma^2) \)

- \(I(\vec{r}) \) is position-dependent variance of the water elevation (proportional to ray density; high in focusing regions, low in defocusing regions)

- Total wave height distribution: \(P(h) = \int P_l(h) f(I) dI \)
Thus, calculate wave height probability by combining

- Rayleigh distribution \(P(h) = \left(\frac{h}{\sigma}\right) \exp\left(-\frac{h^2}{2\sigma^2}\right) \)

- Distribution \(f(I) \), which describes ray dynamics and depends on scattering strength (freak index)

Rogue wave forecasting??
Analytics: limit of small freak index

\[P(h > x \cdot SWH) = \int \exp\left(-2x^2 / I \right) f(I) \, dI \]

For \(\gamma << 1 \): \(f(I) \) well approximated by \(\chi^2 \) distribution of \(n \sim \gamma^{-2} \) degrees of freedom (mean 1, width \(\sim \gamma \))

\[P(h > x \cdot SWH) = \frac{2(nx^2)^{n/4}}{\Gamma(n/2)} \cdot K_{n/2}(2\sqrt{nx}) \]
Analytics: limit of small freak index

\[P(h > x \cdot SWH) = \frac{2(nx^2)^{n/4}}{\Gamma(n/2)} K_{n/2}(2\sqrt{nx}) \]

Perturbative limit: for \(x^2 \gamma << 1 \) (\(x << n^{1/4} \))

\[P(h > x \cdot SWH) = \left[1 + \frac{4}{n} (x^4 - x^2) \right] \exp(-2x^2) \]

Asymptotic limit: for \(x \gamma^3 >> 1 \) (\(x >> n^{3/2} \))

\[P(h > x \cdot SWH) = \frac{\sqrt{\pi} (\sqrt{nx})^{(n-1)/2}}{\Gamma(n/2)} \exp(-2\sqrt{nx}) \]
Numerical Simulations

- Incoming sea with $v=7.8 \, \text{m/s} \, (T=10 \, \text{s}, \, \lambda=156 \, \text{m})$
- Random current with $u_{\text{rms}} = 0.5 \, \text{m/s}$ and correlation $\xi=20 \, \text{km}$
- Dimensionless parameters:
 - $\lambda / \xi << 1$ (ray limit)
 - $\delta \theta \sim (u_{\text{rms}} / v)^{2/3} << 1$ (small-angle scattering)
 - $\Delta \theta = \text{spreading angle} = 5$ to 25°
 - $\gamma = \delta \theta / \Delta \theta = \text{freak index} \, (\gamma=3.5 \text{ to } 0.7)$
Wave height distribution for ocean waves

![Wave Height Distribution Graph]

- Numerical Data
- K Distribution
- Rayleigh

Wave Height / SWH

Cumulative Probability
Numerical test of N vs γ
Probability enhancement over Rayleigh predictions

<table>
<thead>
<tr>
<th>$\Delta \theta$</th>
<th>γ</th>
<th>N</th>
<th>$E(2.2)$</th>
<th>$E(3.0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3.6</td>
<td>3.46</td>
<td>57</td>
<td>16800</td>
</tr>
<tr>
<td>10</td>
<td>1.8</td>
<td>13.9</td>
<td>10.4</td>
<td>570</td>
</tr>
<tr>
<td>15</td>
<td>1.2</td>
<td>31.2</td>
<td>4.3</td>
<td>76</td>
</tr>
<tr>
<td>20</td>
<td>0.90</td>
<td>55.4</td>
<td>2.7</td>
<td>22</td>
</tr>
<tr>
<td>25</td>
<td>0.72</td>
<td>86.6</td>
<td>2.0</td>
<td>9.8</td>
</tr>
<tr>
<td>30</td>
<td>0.60</td>
<td>125</td>
<td>1.7</td>
<td>5.7</td>
</tr>
</tbody>
</table>

$u_{\text{RMS}} = 0.5 \text{ m/s} \quad \nu = 7.8 \text{ m/s}$
Extension to nonlinear waves

NLS with current:

\[iA_t + \frac{1}{4} A_{xx} - \frac{1}{8} A_{yy} - \frac{1}{2} |A|^2 A - U_x A = 0 \]

where

\[\Psi(x, y, t) \sim A(x, y, t)e^{ik_0 x - i \omega_0 t} \]
Actually use 4th order equation (Stocker & Peregerine)

\[
iB_T - \frac{1}{8}(B_{XX} - 2B_{YY}) - \frac{1}{2}B|B|^2 - B\Phi_{cX} \\
= \frac{i}{16}(B_{XX} - 6B_{YY}) + \bar{\Phi}_X B + \frac{i}{4}B(BB^*_X - 6B^*_X) \\
+i(\frac{1}{2}\Phi_{cXT} - \Phi_{cZ})B - i(\Phi_{cX} B_X + \Phi_{cY} B_Y)
\]

Velocity potential: \(\phi = \sqrt{\frac{g}{k_0^2}} [\bar{\Phi} + \Phi_c + \frac{1}{2} (Be^{k_0z+i\theta} + B_2e^{2(k_0z+i\theta)} + \text{c.c.})] \)

Surface elevation: \(\zeta = k_0^{-1} [\bar{\zeta} + \zeta_c + \frac{1}{2} (A^{i\theta} + A_2e^{2i\theta} + A_3e^{3i\theta} + \text{c.c.})] \)

Relation between expansion coefficients:

\[
A = iB + \frac{1}{2k_0}B_x + \frac{i}{8k_0^2}(B_{xx} - 2B_{yy}) + \frac{i}{8}B|B|^2
\]
\[
A_2 = -\frac{1}{2}B^2 + \frac{i}{k_0}BB_x
\]
\[
A_3 = -\frac{3i}{8}B^3
\]
Extension to nonlinear waves

- **Key result**: for moderate steepness, full wave height distribution again reasonably approximated by K-distribution with N degrees of freedom.

- Wave height probability depends on single parameter N (Rayleigh as $N \to \infty$).

- How does N depend on wave steepness, incoming angular spread, spectral width, etc?
Steepness \(\varepsilon = k \cdot (\text{mean crest height}) \)

\[\Delta \theta = 2.6^\circ \]

\[\Delta k / k = 0.1 \]

\[u = 0 \]
N as function of incoming angular spread for fixed steepness and frequency spread
N as function of incoming frequency spread for fixed steepness and angular spread
N as function of steepness for fixed incoming angular spread and frequency spread
Finally, combine currents and nonlinearity!
Summary

- Linear refraction of stochastic Gaussian sea produces lumpy energy density
 - Skews formerly Rayleigh distribution of wave heights
- Importance of refraction quantified by freak index γ
 - Spectacular effects in tail even for small γ
- Very similar wave height distribution in the presence of moderate nonlinearity
- Even more dramatic results obtained when random currents and nonlinearity are acting in concert
 - Refraction may serve as trigger for full non-linear evolution
Thank you!

Ying, Zhuang, Heller, and Kaplan,
Nonlinearity 24, R67 (2011)