Quantum Vacuum Energy in Graphs and Billiards

Lev Kaplan (Tulane)
Texas-Oklahoma-Louisiana collaboration:
Ricardo Estrada (LSU)
Stephen A. Fulling (Texas A\&M)
Klaus Kirsten (Baylor)
Kimball A. Milton (U. Oklahoma)

Outline

- Introduction
- History and Background
- Basic Idea
- Mathematical Setup
- Broad Objectives
- Ex. 1: Quantum Graphs
- Ex. 2: Rectangles, Pistons, and Pistols
- In Progress: More General Geometries
- Summary

History and Background

- Any quantum system has nonzero ground state energy, e.g. $\hbar \omega / 2$ for harmonic oscillator with frequency ω
- In particular, vacuum state of a quantum field has nonzero energy, which is a function of boundary conditions
- 1948: Casimir-Polder force predicted between uncharged conducting plates
$F / A=-\pi^{2} \hbar c / 240 a^{4}$

Measurement in 1958 consistent with theory

History and Background

- 1997: More accurate experiment using plane and sphere

- 2002: Finally, original Casimir parallel plate experiment performed with 15% precision

History and Background

Vacuum energy beyond parallel plates:

- Relation to van der Waals force in chemistry
- 1970s: QFT in curved spacetime
- Chiral bag model of the nucleon
- Dark energy in cosmology
- $\Lambda \sim 10^{-26} \mathrm{~kg} / \mathrm{m}^{3} \sim 10^{-120} c^{5} / \hbar G^{2}$
- Why so small?
- Why not zero?
- Why comparable to present-day mass density of universe?

History and Background

- Stabilizing extra dimensions in brane world models

- Nanotechnology applications: MEMS and NEMS

Static friction caused by vacuum energy is major obstacle to further miniaturization of devices
 such as gears, etc.

Basic Idea

- Find all modes of field φ consistent with given boundary conditions, i.e. solve

$$
-\nabla^{2} \varphi_{n}=\frac{\omega_{n}^{2}}{c^{2}} \varphi_{n}
$$

- Each mode n behaves as independent harmonic oscillator with frequency ω_{n}
- Each mode has energy $\hbar \omega_{n}\left(N_{n}+\frac{1}{2}\right) \quad N_{n}=0,1,2, \ldots$
- Total vacuum energy of the field is

$$
\frac{\hbar}{2} \sum_{n} \omega_{n}
$$

Mathematical Setup

$H=2$ nd order, elliptic, self-adjoint operator (here $H=-\nabla^{2}$) acting on field φ in compact region $\Omega \subset R^{n}$
$H \varphi_{n}=\lambda_{n} \varphi_{n}$
Assume spectrum is nonnegative and discrete
Each mode n behaves as an independent harmonic oscillator with frequency $\omega_{n}=\sqrt{\lambda_{n}} \quad[c=1]$

Zero-point energy of each mode is $\frac{1}{2} \omega_{n} \quad[\hbar=1]$
Vacuum energy $E=\frac{1}{2} \sum_{n} \omega_{n}=\frac{1}{2} \sum_{n} \sqrt{\lambda_{n}}=\frac{1}{2} \operatorname{Tr} \sqrt{H}$

Mathematical Setup

$E=\frac{1}{2} \sum_{n} \omega_{n}=\frac{1}{2} \operatorname{Tr} \sqrt{H}$ divergent, must regularize
Cylinder (Poisson) kernel: $T_{t}(x, y)=\langle x| e^{-t \sqrt{H}}|y\rangle$
Let

$$
E_{t}=-\frac{1}{2} \frac{\partial}{\partial t} \operatorname{Tr} T_{t}=\frac{1}{2} \sum_{n} \omega_{n} e^{-\omega_{n} t}
$$

Somehow must take $t \rightarrow 0$ and get t-independent finite answer for physical forces [renormalization]

Similarly obtain energy density

$$
E_{t}\left(x, \xi=\frac{1}{4}\right)=-\frac{1}{2} \frac{\partial \operatorname{Tr} T_{t}}{\partial t}(x, x)=\frac{1}{2} \sum_{n} \omega_{n}|\varphi(x)|^{2} e^{-\omega_{n} t}
$$

and other components of stress-energy tensor

Real life is more complicated

In specific applications need to consider

- vector fields (e.g., electromagnetic fields)
- going beyond idealized boundary conditions
- more physically realistic cutoffs (e.g., spatial dispersion)

Advantages of toy model

- can address general conceptual issues independent of specific application
- mathematical problem in spectral geometry: asymptotics of cylinder kernel, relation to zeta function, ...

Objectives/Questions

- Role of periodic and closed classical orbits
- quantum-classical correspondence
- Sign of Casimir force in general situations
- Relation of local and global quantities
- nonuniform convergence
- Systematic understanding of boundary, curvature, and corner effects

Objectives/Questions

- Proper renormalization
- under what circumstances do divergent terms cancel?
- can all ∞ 's be absorbed into boundary properties?
- Combining "inside" + "outside" contributions
- Coupling to gravity [Estrada et al., J. Phys. A (2008)]
- Cutoff theories and Lorentz invariance

Ex. 1: Quantum Graphs

S. A. Fulling, L.K., and J. H. Wilson, PRA (2007)
G. Berkolaiko, J. M. Harrison, and J. H. Wilson, J Phys A (2009) J. H. Wilson, senior thesis

Ex. 1: Quantum Graphs

What is a quantum graph?

- Set of line segments joined at vertices
- Singular one-dimensional variety equipped with self-adjoint differential operator
- Approximation for realistic physical wave systems
- Chemistry: free electron theory of conjugated molecules
- Nanotechnology: quantum wire circuits
- Optics: photonic crystals
- Laboratory for investigating general questions about scattering, quantum chaos, spectral theory

Ex. 1: Quantum Graphs

$H=-\nabla^{2}$ on each bond

Kirchhoff boundary conditions at each vertex

- Continuity $\psi_{j}(0)=\psi_{\alpha}$ for all bonds j starting at vertex α
- Current conservation $\sum_{j} \partial \psi_{j}(0)=c_{\alpha} \psi_{\alpha}$ where sum is over all bonds j starting at vertex α, and derivative is in outward direction
- Neumann-like: $c_{\alpha}=0$; Dirichlet: $c_{\alpha}=\infty$

Vacuum Energy in QG

Direct calculation using spectrum

Two movable "pistons"
Focus on "a" region between pistons:
Dirichlet (DD): $\omega_{n}=n \pi / a(n=1 \cdots \infty)$
Neumann (NN): $\omega_{n}=n \pi / a(n=0 \cdots \infty)$
$\operatorname{Tr} T_{t}=\sum_{n=0,1}^{\infty} e^{-(n \pi / a) t}=\frac{a}{\pi t} \pm \frac{1}{2}+\frac{1}{12} \frac{\pi t}{a}+O\left(t^{2}\right)$

$$
\Rightarrow E_{t}=-\frac{1}{2} \frac{\partial \operatorname{Tr} T_{t}}{\partial t}=\frac{a}{2 \pi t^{2}}-\frac{\pi}{24 a}+O(t)
$$

Vacuum Energy in QG

$$
E_{t}=\frac{a}{2 \pi t^{2}}-\frac{\pi}{24 a}+O(t)
$$

First term divergent as $t \rightarrow 0$

$$
\begin{aligned}
E_{t}^{\text {Total }} & =\frac{a+L_{1}+L_{2}}{2 \pi t^{2}}-\frac{\pi}{24}\left(a^{-1}+L_{1}^{-1}+L_{2}^{-1}\right)+O(t) \\
& =\frac{\text { const }}{2 \pi t^{2}}-\frac{\pi}{24}\left(a^{-1}+L_{1}^{-1}+L_{2}^{-1}\right)+O(t)
\end{aligned}
$$

Divergent term is a-independent constant energy density
\Rightarrow force on piston is finite!

Vacuum Energy in QG

$$
E^{\mathrm{Total}}=\mathrm{const}-\frac{\pi}{24}\left(a^{-1}+L_{1}^{-1}+L_{2}^{-1}\right)
$$

Can safely take $L_{1}, L_{2} \rightarrow \infty$

$E_{t}^{\text {Total }}=$ const $-\frac{\pi}{24 a}$

$$
\Rightarrow F_{D D}=F_{N N}=-\frac{\partial E}{\partial a}=-\frac{\pi}{24 a^{2}} \text { (attractive) }
$$

If one piston is Dirichlet and the other Neumann,

$$
\Rightarrow F_{D N}=+\frac{\pi}{48 a^{2}} \text { (repulsive) }
$$

Alternative Approach

Periodic Orbit Perspective: $\operatorname{Tr} T_{t}=\int d x T_{t}(x, x)$

- Free cylinder kernel in 1D: $T_{t}^{0}(x, y)=\frac{t}{\pi} \frac{1}{(x-y)^{2}+t^{2}}$
- Then $T_{t}(x, x)$ in problem with boundaries obtainable by method of images as sum over periodic and closed orbits:

$$
T_{t}(x, x)=\operatorname{Re} \sum_{p} \frac{t}{\pi} \frac{A_{p}}{L_{p}^{2}+t^{2}}+\text { closed orbits }+O\left(t^{2}\right)
$$

- $p=$ periodic orbit going through x
- $L_{p}=$ orbit length
- $A_{p}=$ product of scattering factors
- Can obtain asymptotic $t \rightarrow 0$ behavior term by term

Alternative Approach

Periodic Orbit Perspective:

- Taking trace and accounting for repetitions r,
$\operatorname{Tr} T_{t}=\int d x T_{t}(x, x)=$
$\frac{t}{\pi} \frac{a}{t^{2}}+\operatorname{Re} \sum_{p} \sum_{r=1}^{\infty} \frac{t}{\pi} \frac{2 L_{p}\left(A_{p}\right)^{r}}{\left(r L_{p}\right)^{2}}+O\left(t^{2}\right)$
- Divergent (Weyl) term associated with zero-length orbit
- For single line segment a, only one nonzero-length periodic orbit $L_{p}=2 a$ plus repetitions

$$
\begin{aligned}
F_{D D}= & F_{N N}=-\frac{1}{4 \pi a^{2}}\left(+1+\frac{1}{4}+\frac{1}{9}+\cdots\right) \\
& F_{D N}=-\frac{1}{4 \pi a^{2}}\left(-1+\frac{1}{4}-\frac{1}{9}+\cdots\right)
\end{aligned}
$$

- Periodic orbit sum converges
- Sign of force can be read off from phase associated with shortest orbit (in general, boundaries + Maslov indices)

Vacuum Energy in Star Graphs

Vacuum Energy in Star Graphs

- N-like boundary at junction joining B bonds
- N, D, or $e^{i \theta}$ boundary at each piston

Each piston at distance a_{j} from junction
Exact expression for ω_{n} only when all a_{j} equal
In general, can find ω_{n} by solving characteristic equation $\operatorname{det} h(\omega)=0$ numerically

$$
\Rightarrow \text { Then } E=\lim _{t \rightarrow 0}\left[\frac{1}{2} \sum_{n} \omega_{n} e^{-\omega_{n} t}-\frac{\sum_{j} a_{j}}{2 \pi t^{2}}\right]
$$

Convergence improved by Richardson extrapolation

Star Graphs: Periodic Orbits

Alternatively: use periodic orbit expansion

Contribution to vacuum energy from shortest orbit only (bouncing back and forth once in one bond):

$$
E \approx-\frac{1}{2 \pi}\left(\frac{2}{B}-1\right) \sum_{j=1}^{B} \frac{(\pm 1)}{a_{j}}
$$

± 1 for Neumann or Dirichlet pistons
Gives correct sign for Casimir forces at least for $B>3$

- repulsive for Neumann
- attractive for Dirichlet

Star Graphs: Periodic Orbits

Comparison between shortest orbit approximation \& exact answer for equal bond case

Star Graphs: Periodic Orbits

Add up all repetitions of shortest orbits (Neumann):

$$
\begin{aligned}
& E \approx-\frac{1}{4 \pi} \sum_{r=1}^{\infty} \frac{1}{r^{2}}\left(\frac{2}{B}-1\right)^{r} \sum_{j=1}^{B} \frac{1}{a_{j}} \\
& E \approx \frac{\pi}{48}\left(1-\frac{24 \ln 2}{\pi^{2} B}+\cdots\right) \sum_{j=1}^{B} \frac{1}{a_{j}}
\end{aligned}
$$

Compare with analytic result for B Neumann pistons with equal bond lengths:

$$
E=\frac{\pi}{48}\left(1-\frac{3}{B}\right) \frac{B}{a}
$$

Shortest orbits give only leading contribution in $1 / B$ expansion
\Rightarrow need more orbits to obtain full answer for finite B

Star Graphs: General Case

$B=4$ star graph with unequal bonds and all Neumann pistons

Sum over orbits $L_{p} \leq L_{\max } \&$ compare with "exact" answer

$$
\text { Error } \sim\left(L_{\max }\right)^{-1}
$$

Star Graphs: General Case

$B=4$ star graph with unequal bonds and arbitrary $e^{i \theta}$ pistons Sum over orbits $L_{p} \leq L_{\text {max }} \&$ compare with "exact" answer

Error $\sim\left(L_{\max }\right)^{-3 / 2}$

Ex. 2: Rectangles, Pistons, and Pistols

S. A. Fulling, L.K., K. Kirsten, Z. H. Liu, and K. A. Milton, J Phys A (2009); Z. H. Liu, Ph.D. thesis

Motivating Question: Naive renormalization (Lukosz 1971, ...) suggests outward force on sides of square or cubic box

Ex. 2a: Rectangular cavity

No straightforward way to evaluate $E_{t}=\frac{1}{2} \sum_{n} \omega_{n} e^{-\omega_{n} t}$ directly

Use classical path approach

Need all classical paths from x to x
Classify by number of bounces from a sides and number of bounces from b sides

- Periodic paths: Even Even
- Side paths: Even Odd or Odd Even
- Corner paths: Odd Odd

Rectangle: periodic paths

$$
\begin{aligned}
E_{t, \text { Periodic }}= & \frac{a b}{2 \pi t^{3}}-\frac{a b}{2 \pi} \sum_{k=1}^{\infty}(-1)^{\eta} \frac{(2 k b)^{2}-2 t^{2}}{\left[t^{2}+(2 k b)^{2}\right]^{5 / 2}} \\
& -\frac{a b}{2 \pi} \sum_{j=1}^{\infty}(-1)^{\eta} \frac{(2 j a)^{2}-2 t^{2}}{\left[t^{2}+(2 j a)^{2}\right]^{5 / 2}} \\
& -\frac{a b}{\pi} \sum_{j=1}^{\infty} \sum_{k=1}^{\infty}(-1)^{\eta} \frac{(2 j a)^{2}+(2 k b)^{2}-2 t^{2}}{\left[t^{2}+(2 j a)^{2}+(2 k b)^{2}\right]^{5 / 2}}
\end{aligned}
$$

$\eta=\#$ of Dirichlet bounces
Assume all Neumann or all Dirichlet sides:

$$
\begin{aligned}
E_{t, \text { Periodic }} & =\frac{a b}{2 \pi t^{3}}-\frac{\zeta(3)}{16 \pi}\left(\frac{a}{b^{2}}+\frac{b}{a^{2}}\right) \\
& -\frac{a b}{8 \pi} \sum_{j=1}^{\infty} \sum_{k=1}^{\infty}\left(a^{2} j^{2}+b^{2} k^{2}\right)^{-3 / 2}+O\left(t^{2}\right)
\end{aligned}
$$

Rectangle: add all paths

$$
E_{t, \text { Nonperiodic }}=\mp \frac{2 a+2 b}{8 \pi t^{2}} \pm \frac{\pi}{48}\left(\frac{1}{a}+\frac{1}{b}\right)+O\left(t^{2}\right)
$$

Combining all terms:

$$
\begin{aligned}
E_{t} & =\frac{\text { Area }}{2 \pi t^{3}} \mp \frac{\text { Perimeter }}{8 \pi t^{2}}-\frac{\zeta(3)}{16 \pi}\left(\frac{a}{b^{2}}+\frac{b}{a^{2}}\right) \\
& -\frac{a b}{8 \pi} \sum_{j, k=1}^{\infty}\left(a^{2} j^{2}+b^{2} k^{2}\right)^{-3 / 2} \pm \frac{\pi}{48}\left(\frac{1}{a}+\frac{1}{b}\right)+O\left(t^{2}\right)
\end{aligned}
$$

Force on horizontal side:

$$
\begin{aligned}
F=- & \frac{\partial E_{t}}{\partial a}=\text { divergent }+\frac{\zeta(3)}{16 \pi b^{2}}-\frac{\zeta(3) b}{8 \pi a^{3}} \\
& +\frac{b}{8 \pi} \sum_{j, k=1}^{\infty} \frac{k^{2} b^{2}-2 j^{2} a^{2}}{\left(j^{2} a^{2}+k^{2} b^{2}\right)^{5 / 2}} \pm \frac{\pi}{48 a^{2}}
\end{aligned}
$$

Force on side of rectangle

$$
\begin{gathered}
F=\text { divergent }+\frac{\zeta(3)}{16 \pi b^{2}}-\frac{\zeta(3) b}{8 \pi a^{3}} \\
+\frac{b}{8 \pi} \sum_{j, k=1}^{\infty} \frac{k^{2} b^{2}-2 j^{2} a^{2}}{\left(j^{2} a^{2}+k^{2} b^{2}\right)^{5 / 2}} \pm \frac{\pi}{48 a^{2}}
\end{gathered}
$$

Naive "renormalization": drop divergent terms and interpret t-independent result as physical force on the side of box

- $a \ll b$: attractive (like parallel plates)
- Square box with Dirichlet sides: repulsive!

Problems:

- Throwing away infinite terms
- Ignoring outside of box

Ex. 2b: Rectangular piston

Add contributions from $a \times b$ rectangle and $(L-a) \times b$ rectangle

- Divergent terms cancel (total area and perimeter are conserved)
- One finite contribution from $(L-a) \times b$ rectangle survives

$$
\begin{aligned}
\underset{\text { piston }}{\text { As }} \rightarrow & \xlongequal[\infty]{ } 0+\frac{\zeta(3)}{16 \pi b^{2}}-\frac{\zeta(3) b}{8 \pi a^{3}} \\
& +\frac{b}{8 \pi} \sum_{j, k=1}^{\infty} \frac{k^{2} b^{2}-2 j^{2} a^{2}}{\left(j^{2} a^{2}+k^{2} b^{2}\right)^{5 / 2}} \pm \frac{\pi}{48 a^{2}}-\frac{\zeta(3)}{16 \pi b^{2}}
\end{aligned}
$$

Ex. 2b: Rectangular piston

Finally (Cavalcanti 2004)

$$
\begin{aligned}
F_{\text {piston }} & =-\frac{\zeta(3) b}{8 \pi a^{3}}+\frac{b}{8 \pi} \sum_{j, k=1}^{\infty} \frac{k^{2} b^{2}-2 j^{2} a^{2}}{\left(j^{2} a^{2}+k^{2} b^{2}\right)^{5 / 2}} \pm \frac{\pi}{48 a^{2}} \\
& =\frac{\pi}{b^{2}} \sum_{j, k=1}^{\infty} k^{2} K_{1}^{\prime}\left(2 \pi j k \frac{a}{b}\right) \quad \text { [always attractive!] } \\
& =-\frac{\zeta(3) b}{8 \pi a^{3}}+\frac{\pi}{48 a^{2}}-\frac{\zeta(3)}{16 \pi b^{2}}+\frac{\pi b}{a^{3}} \sum_{j, k=1}^{\infty} k^{2} K_{0}\left(2 \pi j k \frac{b}{a}\right)
\end{aligned}
$$

Decays exponentially for $a \gg b$; parallel plates for $a \ll b$

Ex. 2c: Casimir pistol

What would happen if external shaft is not present?

Here all dimensions \gg cutoff t, except possibly $c \sim t$ All Dirichlet boundaries

$$
\begin{aligned}
E= & \frac{u s}{\pi t} \sum_{k=1}^{\infty} \frac{1-2 k^{2} u^{2}}{\left(1+4 k^{2} u^{2}\right)^{5 / 2}}+\frac{u s}{\pi t} \sum_{j=1}^{\infty} \frac{1-2 j^{2} s^{2}}{\left(1+4 j^{2} s^{2}\right)^{5 / 2}} \\
& +\frac{2 u s}{\pi t} \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \frac{1-2 j^{2} s^{2}-2 k^{2} u^{2}}{\left(1+4 j^{2} s^{2}+4 k^{2} u^{2}\right)^{5 / 2}} \\
& +\frac{s}{2 \pi t} \sum_{j=1}^{\infty} \frac{-1+4 j^{2} s^{2}}{\left(1+4 j^{2} s^{2}\right)^{2}}+\frac{2 r(l-s)}{\pi t} \sum_{k=1}^{\infty} \frac{1-2 k^{2} r^{2}}{\left(1+4 k^{2} r^{2}\right)^{5 / 2}}
\end{aligned}
$$

Ex. 2c: Casimir pistol

$$
\begin{aligned}
& \text { Use scaled variables } \\
& \begin{array}{l}
c=r t \\
a
\end{array}=s t \\
& b=u t \\
& d=L-a=(l-s) t \\
& E
\end{aligned}
$$

Ex. 2c: Casimir pistol

Horizontal force as function of a :

- narrow chamber $a \ll b^{1 / 3} c^{2 / 3}$: like parallel plates $F \sim-1 / a^{2}$ (attractive)
- longer chamber $a \gg b^{1 / 3} c^{2 / 3}$: gaps dominate:
F is $a-$ independent
- $c>0.6 t \Rightarrow$ attractive
- $c<0.6 t \Rightarrow$ repulsive (believable???)

Ex. 3: Quarter stadium cavity

- Numerically obtain all frequencies ω_{n} up to $\omega_{\max }$
- Evaluate $E_{t}=\frac{1}{2} \sum_{\omega_{n}<\omega_{\max }} \omega_{n} e^{-\omega_{n} t}+O\left(e^{-\omega_{\max } t}\right)$
- Leading $t \rightarrow 0$ behavior: $E_{t}^{\mathrm{Weyl}}=\frac{\text { Area }}{2 \pi t^{3}}-\frac{\text { Perimeter }}{8 \pi t^{2}}$
- $E_{t}-E_{t}^{\mathrm{Weyl}}=A \ln t+B+C t+D t^{2} \ln t+E t^{2}+F t^{3}+\cdots$
- Casimir force given by dependence of B on geometry

Ex. 3: Quarter stadium cavity

Ex. 4: Elliptic cavity

with H.-J. Flad and K. Kirsten

$$
E_{t}=\frac{2 a_{0}}{t}+\frac{a_{1 / 2}}{t^{2}}+E_{0}+\frac{a_{3 / 2}}{2 \sqrt{\pi}}(\gamma+\ln t)+\frac{a_{2} t}{2}+\cdots
$$

to be compared with heat kernel expansion

$$
K(t)=\sum_{n} e^{-\omega_{n}^{2} t}=\sum_{\ell=0, \frac{1}{2}, 1, \cdots} a_{\ell} t^{\ell-1}
$$

with coefficients known analytically for this case in terms of hypergeometric functions

- Comparison with known heat kernel asymptotics allows check of numerics
- Then easily numerically obtain $E_{0}=\frac{1}{2} \mathrm{FP} \zeta\left(-\frac{1}{2}\right)$

Conclusions

- Careful regularization and renormalization (including inside and outside contributions) needed to obtain physically meaningful energies and forces
- Classical orbit approach produces exact results in simple cases and may allow for good approximations where exact solutions are nonexistent
- Hope for intelligent combination of anlaytical and numerical tools for general geometries

