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History and Background
• Any quantum system has nonzero ground state energy, e.g.

~ω/2 for harmonic oscillator with frequencyω

• In particular, vacuum state of a quantum field has nonzero

energy, which is a function of boundary conditions

• 1948: Casimir-Polder force predicted between uncharged

conducting plates

F/A = −π2
~c/240a4

Measurement in 1958

consistent with theory
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History and Background
• 1997: More accurate experiment using plane and sphere

• 2002: Finally, original Casimir parallel plate experiment

performed with 15% precision
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History and Background
Vacuum energy beyond parallel plates:

• Relation to van der Waals force in chemistry

• 1970s: QFT in curved spacetime

• Chiral bag model of the nucleon

• Dark energy in cosmology

• Λ ∼ 10−26kg/m3 ∼ 10−120c5/~G2

• Why so small?

• Why not zero?

• Why comparable to present-day mass density of

universe?
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History and Background

• Stabilizing extra dimensions

in brane world models

• Nanotechnology applications:

MEMS and NEMS

Static friction caused by vacuum

energy is major obstacle to fur-

ther miniaturization of devices

such as gears, etc.
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Basic Idea
• Find all modes of fieldϕ consistent with given boundary

conditions, i.e. solve

−∇2ϕn =
ω2

n

c2
ϕn

• Each moden behaves as independent harmonic oscillator

with frequencyωn

• Each mode has energy~ωn(Nn + 1
2
) Nn = 0, 1, 2, . . .

• Total vacuum energy of the field is

~

2

∑

n

ωn
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Mathematical Setup
H = 2nd order, elliptic, self-adjoint operator (hereH = −∇2)

acting on fieldϕ in compact regionΩ ⊂ Rn

Hϕn = λnϕn

Assume spectrum is nonnegative and discrete

Each moden behaves as an independent harmonic oscillator

with frequency ωn =
√
λn [c = 1]

Zero-point energy of each mode is1
2
ωn [~ = 1]

Vacuum energyE =
1

2

∑

n

ωn =
1

2

∑

n

√

λn =
1

2
Tr

√
H
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Mathematical Setup
E = 1

2

∑

n ωn = 1
2

Tr
√
H divergent, mustregularize

Cylinder (Poisson) kernel:Tt(x, y) = 〈x|e−t
√

H |y〉

Let Et = −1

2

∂

∂t
Tr Tt =

1

2

∑

n

ωne
−ωnt

Somehow must taket→ 0 and gett−independent finite answer

for physical forces [renormalization]

Similarly obtain energy density

Et(x, ξ = 1
4
) = −1

2
∂Tr Tt

∂t
(x, x) = 1

2

∑

n ωn|ϕ(x)|2e−ωnt

and other components of stress-energy tensor
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Real life is more complicated
In specific applications need to consider

• vector fields (e.g., electromagnetic fields)

• going beyond idealized boundary conditions

• more physically realistic cutoffs (e.g., spatial dispersion)

Advantages of toy model

• can address general conceptual issues independent of

specific application

• mathematical problem in spectral geometry: asymptotics of

cylinder kernel, relation to zeta function, ...
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Objectives/Questions

• Role of periodic and closed classical orbits

• quantum-classical correspondence

• Sign of Casimir force in general situations

• Relation of local and global quantities

• nonuniform convergence

• Systematic understanding of boundary, curvature, and

corner effects
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Objectives/Questions

• Proper renormalization

• under what circumstances do divergent terms cancel?

• can all∞’s be absorbed into boundary properties?

• Combining “inside” + “outside” contributions

• Coupling to gravity [Estrada et al., J. Phys. A (2008)]

• Cutoff theories and Lorentz invariance
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Ex. 1: Quantum Graphs
S. A. Fulling, L.K., and J. H. Wilson, PRA (2007)

G. Berkolaiko, J. M. Harrison, and J. H. Wilson, J Phys A (2009)

J. H. Wilson, senior thesis
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Ex. 1: Quantum Graphs
What is a quantum graph?

• Set of line segments joined at vertices

• Singular one-dimensional variety equipped with

self-adjoint differential operator

• Approximation for realistic physical wave systems

• Chemistry: free electron theory of conjugated

molecules

• Nanotechnology: quantum wire circuits

• Optics: photonic crystals

• Laboratory for investigating general questions about

scattering, quantum chaos, spectral theory
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Ex. 1: Quantum Graphs

H = −∇2 on each bond

Kirchhoff boundary conditions at each vertex

• Continuityψj(0) = ψα for all bondsj starting at vertexα

• Current conservation
∑

j ∂ψj(0) = cαψα where sum is over

all bondsj starting at vertexα, and derivative is in outward

direction

• Neumann-like:cα = 0; Dirichlet: cα = ∞
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Vacuum Energy in QG
Direct calculation using spectrum

Two movable “pistons”

Focus on “a” region between pistons:

Dirichlet (DD): ωn = nπ/a (n = 1 · · ·∞)

Neumann (NN):ωn = nπ/a (n = 0 · · ·∞)

Tr Tt =
∑∞

n=0,1 e
−(nπ/a)t = a

πt
± 1

2
+ 1

12
πt
a

+O(t2)

⇒ Et = −1

2

∂Tr Tt

∂t
=

a

2πt2
− π

24a
+O(t)

Quantum Vacuum Energy in Graphs and Billiards Symposium in Memoriam Marcos Moshinsky, Cuernavaca Aug 12, 2010 – p.16/41



Vacuum Energy in QG

Et =
a

2πt2
− π

24a
+O(t)

First term divergent ast→ 0

ETotal
t = a+L1+L2

2πt2
− π

24
(a−1 + L1

−1 + L2
−1) +O(t)

= const
2πt2

− π
24

(a−1 + L1
−1 + L2

−1) +O(t)

Divergent term isa-independent constant energy density

⇒ force on piston is finite!
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Vacuum Energy in QG
ETotal = const − π

24
(a−1 + L1

−1 + L2
−1)

Can safely takeL1, L2 → ∞

ETotal
t = const − π

24a

⇒ FDD = FNN = −∂E
∂a

= − π

24a2
(attractive)

If one piston is Dirichlet and the other Neumann,

⇒ FDN = +
π

48a2
(repulsive)
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Alternative Approach
Periodic Orbit Perspective:Tr Tt =

∫

dx Tt(x, x)

• Free cylinder kernel in 1D:T 0
t (x, y) = t

π
1

(x−y)2+t2

• ThenTt(x, x) in problem with boundaries obtainable by

method of images as sum over periodic and closed orbits:

Tt(x, x) = Re
∑

p

t

π

Ap

L2
p + t2

+ closed orbits +O(t2)

• p = periodic orbit going throughx

• Lp = orbit length

• Ap = product of scattering factors

• Can obtain asymptotict→ 0 behavior term by term
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Alternative Approach
Periodic Orbit Perspective:

• Taking trace and accounting for repetitionsr,

Tr Tt =
∫

dx Tt(x, x) =
t
π

a
t2

+ Re
∑

p

∑∞
r=1

t
π

2Lp(Ap)r

(rLp)2
+O(t2)

• Divergent (Weyl) term associated with zero-length orbit

• For single line segmenta, only one nonzero-length periodic

orbitLp = 2a plus repetitions

FDD = FNN = − 1
4πa2 (+1 + 1

4
+ 1

9
+ · · ·)

FDN = − 1
4πa2 (−1 + 1

4
− 1

9
+ · · ·)

• Periodic orbit sum converges

• Sign of force can be read off from phase associated with

shortest orbit (in general, boundaries + Maslov indices)
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Vacuum Energy in Star Graphs
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Vacuum Energy in Star Graphs

• N-like boundary at junction joiningB

bonds

• N, D, or eiθ boundary at each piston

Each piston at distanceaj from junction

Exact expression forωn only when allaj equal

In general, can findωn by solving characteristic equation

det h(ω) = 0 numerically

⇒ Then E = lim
t→0

[

1

2

∑

n

ωne
−ωnt −

∑

j aj

2πt2

]

Convergence improved by Richardson extrapolation
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Star Graphs: Periodic Orbits
Alternatively: use periodic orbit expansion

Contribution to vacuum energy from shortest orbit only

(bouncing back and forth once in one bond):

E ≈ − 1

2π

(

2

B
− 1

) B
∑

j=1

(±1)

aj

±1 for Neumann or Dirichlet pistons

Gives correct sign for Casimir forces at least forB > 3

• repulsive for Neumann

• attractive for Dirichlet
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Star Graphs: Periodic Orbits
Comparison between shortest orbit approximation & exact

answer for equal bond case
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Star Graphs: Periodic Orbits
Add up all repetitions of shortest orbits (Neumann):

E ≈ − 1

4π

∞
∑

r=1

1

r2

(

2

B
− 1

)r B
∑

j=1

1

aj

E ≈ π

48

(

1 − 24 ln 2

π2B
+ · · ·

) B
∑

j=1

1

aj

Compare with analytic result forB Neumann pistons withequal

bond lengths:
E =

π

48

(

1 − 3

B

)

B

a

Shortest orbits give only leading contribution in1/B expansion

⇒ need more orbits to obtain full answer for finiteB
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Star Graphs: General Case
B = 4 star graph with unequal bonds and all Neumann pistons

Sum over orbitsLp ≤ Lmax & compare with “exact” answer
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Star Graphs: General Case
B = 4 star graph with unequal bonds and arbitraryeiθ pistons

Sum over orbitsLp ≤ Lmax & compare with “exact” answer
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Ex. 2: Rectangles, Pistons, and
Pistols
S. A. Fulling, L.K., K. Kirsten, Z. H. Liu, and K. A. Milton,

J Phys A (2009); Z. H. Liu, Ph.D. thesis

Motivating Question: Naive renormalization (Lukosz 1971,...)

suggestsoutward forceon sides of square or cubic box

Is this force real?
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Ex. 2a: Rectangular cavity
No straightforward way to

evaluateEt = 1
2

∑

n ωne
−ωnt

directly

Use classical path approach

Need all classical paths fromx to x

Classify by number of bounces froma sides and number of

bounces fromb sides

• Periodic paths: Even Even

• Side paths: Even Odd or Odd Even

• Corner paths: Odd Odd
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Rectangle: periodic paths

Et,Periodic =
ab

2πt3
− ab

2π

∞
∑

k=1

(−1)η (2kb)2 − 2t2

[t2 + (2kb)2]5/2

− ab

2π

∞
∑

j=1

(−1)η (2ja)2 − 2t2

[t2 + (2ja)2]5/2

−ab
π

∞
∑

j=1

∞
∑

k=1

(−1)η (2ja)2 + (2kb)2 − 2t2

[t2 + (2ja)2 + (2kb)2]5/2

η = # of Dirichlet bounces

Assume all Neumann or all Dirichlet sides:

Et,Periodic =
ab

2πt3
− ζ(3)

16π

(

a

b2
+

b

a2

)

− ab

8π

∞
∑

j=1

∞
∑

k=1

(

a2j2 + b2k2
)−3/2

+O(t2)
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Rectangle: add all paths

Et,Nonperiodic = ∓ 2a+ 2b

8πt2
± π

48

(

1

a
+

1

b

)

+O(t2)

Combining all terms:

Et =
Area

2πt3
∓ Perimeter

8πt2
− ζ(3)

16π

(

a

b2
+

b

a2

)

− ab

8π

∞
∑

j,k=1

(

a2j2 + b2k2
)−3/2 ± π

48

(

1

a
+

1

b

)

+O(t2)

Force on horizontal side:

F = −∂Et

∂a
= divergent +

ζ(3)

16πb2
− ζ(3)b

8πa3

+
b

8π

∞
∑

j,k=1

k2b2 − 2j2a2

(j2a2 + k2b2)5/2
± π

48a2
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Force on side of rectangle
F = divergent +

ζ(3)

16πb2
− ζ(3)b

8πa3

+
b

8π

∞
∑

j,k=1

k2b2 − 2j2a2

(j2a2 + k2b2)5/2
± π

48a2

Naive “renormalization”: drop divergent terms and interpret

t−independent result as physical force on the side of box

• a << b: attractive (like parallel plates)

• Square box with Dirichlet sides: repulsive!

Problems:

• Throwing away infinite terms

• Ignoring outside of box
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Ex. 2b: Rectangular piston

Add contributions froma× b rectangle and(L− a)× b rectangle

• Divergent termscancel (total area and perimeter are

conserved)

• One finite contributionfrom (L− a) × b rectangle survives

asL→ ∞Fpiston = 0 +
ζ(3)

16πb2
− ζ(3)b

8πa3

+
b

8π

∞
∑

j,k=1

k2b2 − 2j2a2

(j2a2 + k2b2)5/2
± π

48a2
− ζ(3)

16πb2
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Ex. 2b: Rectangular piston

Finally (Cavalcanti 2004)

Fpiston = −ζ(3)b

8πa3
+

b

8π

∞
∑

j,k=1

k2b2 − 2j2a2

(j2a2 + k2b2)5/2
± π

48a2

=
π

b2

∞
∑

j,k=1

k2K ′
1

(

2πjk
a

b

)

[always attractive!]

= − ζ(3)b

8πa3
+

π

48a2
− ζ(3)

16πb2
+
πb

a3

∞
∑

j,k=1

k2K0

(

2πjk
b

a

)

Decays exponentially fora≫ b; parallel plates fora≪ b
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Ex. 2c: Casimir pistol
What would happen if ex-

ternal shaft is not present?

Here all dimensions≫ cut-

off t, except possiblyc ∼ t

All Dirichlet boundaries

E =
us

πt

∞
∑

k=1

1 − 2k2u2

(1 + 4k2u2)5/2
+
us

πt

∞
∑

j=1

1 − 2j2s2

(1 + 4j2s2)5/2

+
2us

πt

∞
∑

j=1

∞
∑

k=1

1 − 2j2s2 − 2k2u2

(1 + 4j2s2 + 4k2u2)5/2

+
s

2πt

∞
∑

j=1

−1 + 4j2s2

(1 + 4j2s2)2
+

2r(l − s)

πt

∞
∑

k=1

1 − 2k2r2

(1 + 4k2r2)5/2
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Ex. 2c: Casimir pistol
Use scaled variables

c = rt

a = st

b = ut

d = L− a = (l − s)t

E =
us

πt

∞
∑

k=1

1 − 2k2u2

(1 + 4k2u2)5/2
+
us

πt

∞
∑

j=1

1 − 2j2s2

(1 + 4j2s2)5/2

+
2us

πt

∞
∑

j=1

∞
∑

k=1

1 − 2j2s2 − 2k2u2

(1 + 4j2s2 + 4k2u2)5/2

+
s

2πt

∞
∑

j=1

−1 + 4j2s2

(1 + 4j2s2)2
+

2r(l − s)

πt

∞
∑

k=1

1 − 2k2r2

(1 + 4k2r2)5/2
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Ex. 2c: Casimir pistol

Horizontal force as

function ofa:

• narrow chambera≪ b1/3c2/3: like parallel plates

F ∼ −1/a2 (attractive)

• longer chambera≫ b1/3c2/3: gaps dominate:

F is a−independent

• c > 0.6t⇒ attractive

• c < 0.6t⇒ repulsive (believable???)
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Ex. 3: Quarter stadium cavity

• Numerically obtain all frequenciesωn up toωmax

• EvaluateEt = 1
2

∑

ωn<ωmax
ωne

−ωnt +O(e−ωmaxt)

• Leadingt→ 0 behavior:EWeyl
t = Area

2πt3
− Perimeter

8πt2

• Et −EWeyl
t = A ln t+B+Ct+Dt2 ln t+Et2 +Ft3 + · · ·

• Casimir force given by dependence ofB on geometry
Quantum Vacuum Energy in Graphs and Billiards Symposium in Memoriam Marcos Moshinsky, Cuernavaca Aug 12, 2010 – p.38/41



Ex. 3: Quarter stadium cavity
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Ex. 4: Elliptic cavity
with H.-J. Flad and K. Kirsten

Et =
2a0

t
+
a1/2

t2
+ E0 +

a3/2

2
√
π

(γ + ln t) +
a2t

2
+ · · ·

to be compared with heat kernel expansion

K(t) =
∑

n

e−ω2
nt =

∑

ℓ=0, 1
2
,1,···

aℓt
ℓ−1

with coefficients known analytically for this case in terms of

hypergeometric functions

• Comparison with known heat kernel asymptotics allows

check of numerics

• Then easily numerically obtainE0 = 1
2
FPζ

(

−1
2

)
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Conclusions

• Careful regularization and renormalization (including

inside and outside contributions) needed to obtain

physically meaningful energies and forces

• Classical orbit approach produces exact results in simple

cases and may allow for good approximations where exact

solutions are nonexistent

• Hope for intelligent combination of anlaytical and

numerical tools for general geometries
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