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ABSTRACT

The generation of light containing large degrees of orbital angular momentum (OAM) has recently been demon-
strated in both the classical and quantum regimes. Since there is no fundamental limit to how many quanta of
OAM a single photon can carry, optical states with an arbitrarily high difference in this quantum number may,
in principle, be entangled. This opens the door to investigations into high-dimensional entanglement shared
between states in superpositions of nonzero OAM. Additionally, making use of non-zero OAM states can allow
for a dramatic increase in the amount of information carried by a single photon, thus increasing the information
capacity of a communication channel. In practice, however, it is difficult to differentiate between states with
high OAM numbers with high precision. Here we investigate the ability of deep neural networks to differentiate
between states that contain large values of OAM. We show that such networks may be used to differentiate be-
tween nearby OAM states that contain realistic amounts of noise, with OAM values of up to 100. Additionally,
we examine how the classification accuracy scales with the signal-to-noise ratio of images that are used to train
the network, as well as those being tested. Finally, we demonstrate the simultaneous classification of > 100 OAM
states with greater than 70 % accuracy. We intend to verify our system with experimentally-produced classi-
cal OAM states, as well as investigate possibilities that would allow this technique to work in the few-photon
quantum regime.
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1. INTRODUCTION

A fundamental goal in optical communications is to maximize the amount of information that one may store
in and transmit with light. Current optical fiber systems are reaching limits imposed by nonlinear effects,1

but spatial-division-multiplexing methods offer a potential solution to bypass such limitations. One promising
route toward achieving this is by making use of the orbital angular momentum (OAM) degree-of-freedom of
light, which in principle has infinite degrees of freedom, allowing for potential orders-of-magnitude increases in
information transfer rates2,3 . Classical fields of light containing OAM, such as Laguerre-Gauss (LG) and Bessel-
Gauss (BG) modes, have been used to successfully demonstrate bit transmission rates of > 1 Terabit per second
in both free-space and fiber systems.4,5 However, these results have been constrained by the maximum number
of simultaneously detectable OAM modes, which is currently 16.6 Additionally, polarization entanglement in
Gaussian modes has been successfully transferred to the OAM degree-of-freedom (l) of photons up to l =
±300.7 However, the detection method used suffers from adding unwanted loss to the optical state, and requires
increasingly precise alignment and resolution as the degree of OAM is increased. Another commonly used method
of OAM detection relies on the use of cascaded Mach-Zehnder interferometers, which is not an easily scalable
approach. Furthermore, these methods require bulky optical devices, making their integration into a compact
platform troublesome. Alternatives have recently appeared in the form of plasmonic lenses,8 as well as a simple
shallow neural network for visual classification of OAM intensity profiles.6 The plasmonics lens solution requires
the use of a near-field scanning optical microscope as well as additional numerical techniques to classify OAM
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modes. The near-field scanning microscope is a major impediment to any compact integration effort, much
like cascaded interferometers. The shallow (i.e. no more than one hidden layer between input and output, as
described below) neural network, so far the most successful method of simultaneous discrimination, is capable
of discriminating 16 different types of OAM superposition modes simultaneously after free-space transmission
through turbulent city atmosphere. We expand on this concept by making use of more state-of-the-art machine
learning techniques that involve deep neural networks, which have proven quite successful in image classification
scenarios. Here we present a deep neural network capable of correctly identifying the OAM (superposition)
state of numerically-produced noisy test images, as well as a network capable of simultaneously differentiating
110 OAM superposition states with an accuracy of > 70 %, bypassing the need for un-scalable bulky resources
altogether, while allowing for a substantial increase in the number of simultaneously-discriminated OAM modes.
These results have potential revolutionary benefits to increasing communication information rates, not only for
classical communications, but for quantum applications as well, such as quantum key distribution.9

2. OPTICAL MODES WITH NON-ZERO OAM

In cylindrical coordinates, the natural solutions of the paraxial wave equation are Laguerre-Gauss modes. These
modes have a spiral phase distribution eilφ, creating a phase singularity and therefore a region of zero intensity
along the beam axis. The phase advances smoothly with angle; for l = ±1, points at opposite sides of the vortex
are 180◦ out of phase. Light possessing a single topological charge forms the shape of a ring, with inner radius
directly proportional to |l|. Perhaps more applicable to quantum information experiments, light in superpositions
of OAM modes develop unique interference patterns with 2l maxima arranged along this ring, making them prime
candidates for machine learning training images. The state of these superposition modes may be written as

|LGα
±l〉 =

1√
2

(
|LG+l〉+ eiα|LG−l〉

)
(1)

where α denotes the relative phase between the two modes, which corresponds to a rotation of the phase and
intensity structure. These states can theoretically carry OAM of arbitrarily high integer (l) value.

(a) superposition of l=±25 (b) superposition of l=±50 (c) superposition of l=±75

Figure 1: Computer-generated training images for the machine learning software, in superpositions of different
OAM values. Random noise was added to the images in the bottom row to approximate laboratory conditions.
The average signal-to-noise ratios for each are (a) 0.602, (b) 0.690 and (c) 0.704. The images are generated using
a modified version of the “basic paraxial optics toolkit” with Matlab.10

Several different methods exist to generate LG modes of increasing orders. The most straightforward method
is the use of diffraction gratings. A standard diffraction grating consisting of parallel lines leads to diffracted
orders in l = 0 states. To achieve, for example, an l = 1 state, the Gaussian beam needs to travel through
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a central “fork” dislocation diffraction grating that contains exactly one more line above the dislocation than
below. The first-order diffracted output modes then contain l = ± 1 quanta of OAM. Higher OAM states can
be created by increasing the difference in the number of lines above and below the dislocation, or interfering
higher-order Laguerre-Gauss modes.11 Then, interfering the +l and −l modes results in the desired superposition
states. Experimentally, however, these masks have finite resolution and result in imperfect OAM modes, making
it difficult to produce pure OAM states when approaching large values of l. Newer methods that make use of
spatial-light modulators have allowed for a significant increase in the degree of OAM that may be imparted on
an optical mode, allowing for the generation of the aforementioned entangled l = ± 300 state.7

While having received much attention, LG beams are not the only optical states that contain nonzero OAM.
In particular, Bessel-Gauss beams, above the zeroth order, contain increasingly large degrees of OAM, in an
similar manner to LG modes. In addition, BG beams have been shown to exhibit novel properties such as “self-
healing” after encountering an obstacle as well as limited diffraction upon propagation as compared to a typical
Gaussian mode.12–15 The combination of nonzero OAM, limited-diffraction, and self-healing makes BG modes an
interesting prospect for robust, high-information transfer rate optical communication. While it is also possible
to produce higher-order Bessel-Gauss beams with spatial light modulators, recent work has shown promising
methods of generating nearly BG modes via nonlinear processes involving light-atom interactions.16 As these
BG modes are of increasing interest to optical communication and imaging schemes, we plan to extend our
present results to test the effectiveness of deep neural networks on classifying such modes that have undergone
realistic propagation, and have experienced loss and mode distortion after encountering obstacles.

Here, we generate computer-simulated superpositions of Laguerre-Gauss modes from l = 1 to l = 110 to be
used as training images for our deep neural networks. These images have varying amounts of Gaussian white
noise and multiplicative noise added to them, in order to simulate non-ideal experimental conditions. This also
allows for the investigation of how the neural networks perform as the signal-to-noise ratio of the training, and
(or) test images, is varied. Typical images are shown above in the bottom row of Figure 1.

Figure 2: Schematic of a deep neural network that has two hidden layers. The input layer is connected to a
specified number of neurons in the first hidden layer. This continues until the output layer is reached, whose
output corresponds to the resulting classification of the input (image). As an example, the deep neural network
used here to individually classify OAM states contains 18150 input neurons, and 3 hidden layers that each
contain 20 neurons. The output layer consists of either 100 or 110 neurons, depending on what values of OAM
the training images contain (from l = 1 up to either l = 100 or 110).
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3. DEEP LEARNING

Artificial neural networks, like other machine learning methods, are used to solve tasks that are difficult to solve
using standard rule-based programming (for example, handwriting recognition). The general form of a neural
network contains an input layer and an output layer composed of artificial neurons, with “hidden” layers in
between, as shown schematically in Figure 2. In general, each neuron applies a nonlinear transformation on its
weighted and biased input, then applies an activation function before the feed-forward process to the next layer
of neurons. A learning algorithm is then used to back-propagate error, which results in the network’s ability to
learn. A neural network whose number of hidden layers is greater than 1 is referred to as a deep neural network
(DNN), and their study is broadly referred to as “deep learning.” Deep neural networks inherently allow for
significantly increased tiers of abstraction due to the presence of multiple hidden layers, which allows for the
recognition and classification of increasingly complex patterns and decision making.

The field of deep learning has seen explosive growth since 2012, when a seven-layer DNN won the annual
ImageNet computer vision classification competition.17 DNNs until this point had been mostly dismissed as too
computationally expensive and without much practical promise. However, this pessimism began to change with
the confluence of several factors. First, graphical processing units (GPUs) were shown to offer massive parallel
speedups in neural network calculations, allowing models of increasing complexity to be built relatively cheaply
in terms of computational resources. Second, biologically–inspired hierarchical models, such as convolutional
neural networks (CNNs), showed better performance than previous deep models where all neurons in successive
layers were simply connected to each other.18 These new sparser models were not only faster to train, but also
proved to be more accurate.

Figure 3: Prediction accuracy percentages for test images in superpositions of various l values (top left: 25,
top right: 50, bottom left: 75, bottom right: 100) using the Cypress supercomputer. The correct l value is
highlighted in red. The average signal-to-noise ratio of these test images (shown to the right of each plot) was
0.599.
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4. RESULTS

Here we make use of two separate DNNs, one which we utilize for the individual classification of OAM states
with varying signal-to-noise ratios, and one of which performs the simultaneous classification of > 100 OAM
modes with high accuracy. The former is run on Tulane University’s “Cypress” supercomputer, composed of an
Intel Ivy Bridge CPU, Intel Xeon Phi co-processor, and Lustre file system running on Dell storage with Intel
Enterprise Edition for Lustre (IEEL) technology.19 This DNN uses a stochastic gradient descent algorithm,
which continuously updates the weights and biases of each neuron before coming to an output prediction. Each
prediction ends an “epoch,” and a new epoch is started with the optimized weights and biases of the last. A
single trial corresponds to the classification of the test image after 50 epochs. Additionally, this DNN uses
supervised learning, i.e. the network is given the correct l of each training image. As is standard in machine
learning algorithms, we must find the optimal performance settings of the network, known as hyperparameters.
The optimal learning rate η,20 for example, is chosen manually for each training set, and is often a trade-off
between high accuracy and short computation time.

The DNN for individual classification described above contains 18150 input layer neurons (equal to the number
of pixels in the training/test images), three hidden layers with 20 neurons in each hidden layer, and either 100 or
110 output layer neurons (depending on if the classification is extended to l = 100 or 110). A single training set
consists of 20000 images that contain variable amounts of Gaussian and multiplicative (speckle) noise, examples
of which are shown in the insets of Figure 3. The network successfully classifies OAM states up to l = 100,
even with very noisy training and test images (down to a signal-to-noise ratio of ≈ 0.27), after 100 trials. The
prediction accuracy after 100 trials with test images consisting of l = 25, 50, 75, and 100 is shown in Figure
3. The average signal-to-noise ratio of the test images is 0.599. The behavior of the network with increasing

Figure 4: Classification accuracy of our deep neural network versus signal-to-noise ratio of the (training and
test) images, after 100 trials with the same test image on the Cypress supercomputer. Each trial classifies the
test image after 50 epochs. Note that regardless of accuracy percentage, the correct OAM value of l = 50 was
always the most frequently-predicted OAM value (as seen in Fig. 3).
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Figure 5: Classification accuracy for simultaneous discrimination of 110 OAM states with respect to training
epochs on Deep Science AI’s Nvidia Titan X. A pre-trained version of the 16 layer network VGG16 was used.
Further enhancements may come from increasing the number of training examples, as well as model parameter
tuning. The images trained on and tested here have an average SNR of 0.517. An example image with l = 100
is shown in the inset.

average signal-to-noise ratio of both training images and test images is shown in Figure 4. When the training
images and the test image have a signal-to-noise ratio of ≈ 2.3, the accuracy of this network in predicting the
OAM value of an l = 50 test image improves to nearly 60%.

In order to perform the simultaneous classification of a large number of OAM states of different orders, we
used the 16 layer VGG16 network at Deep Science AI using an Nvidia Titan X GPU.21 We began with a version
of VGG16 that was pre-trained on the ImageNet dataset17 as studies have shown that pre-trained networks learn
new classifications faster than those that are untrained, while also requiring less training data.22 Using this
model, we have achieved an accuracy of > 74 % in the simultaneous classification of 110 different OAM states.
Figure 5 shows the accuracy of this simultaneous classification as the number of epochs is increased. We antici-
pate that even higher accuracies will be reached as we increase the resolution of the training and test images used.

5. CONCLUSIONS

In this manuscript we have demonstrated the ability of deep neural networks to effectively classify states that
contain large degrees of orbital angular momentum. We show that such deep learning techniques are able to
successfully perform orbital angular momentum classification even in a low signal-to-noise ratio regime, for
OAM values of up to l = 100. Additionally, we have shown that a 16 layer deep neural network can perform
the simultaneous classification of 110 different orbital angular momentum superposition states with greater than
74 % accuracy. We anticipate that these results may stimulate the use of deep learning techniques applied to
both classical and quantum optics experiments, as well as a variety of communication protocols.
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