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INTRODUCTION
In this work, a neurovascular network approach is employed to

mathematically model the temporal and spatial behavior of coupled
neuronal spiking activity and the corresponding blood/oxygen
delivery.  Neuronal spiking and the vascular response represent
processes of different time scales: few milliseconds and few seconds,
respectively.  Their spatial network architectures and biophysics (-
mechanics) are also quite different so that different physical and
mathematical tools are required to study both systems (for example,
see the related articles in the book [1].)  However, theoretical
significance and practical importance of a uniform approach to this
complex problem are motivated by the necessity to understand how
the human brain functions and biomedical interpretations of functional
neuroimaging diagrams obtained by functional MR imaging (fMRI)
and positron emission tomography (PET).  Although several
substances have been identified that mediate neuronal activity-induced
increases in cerebral blood flow [2,3], the mechanisms that regulate
the time course and the spatial extent of the vascular response to
neuronal activity remain insufficiently characterized.  Recent studies
using optical imaging suggest that the vascular response spreads
spatially within seconds after initiation of neuronal activation [4].  Our
own fMRI studies and those of other groups indicate that both the
amplitude and the time course of the haemodynamic response function
are strongly dependent on global cerebral blood flow [5].  These
findings have major implications for event-related studies of brain
function and contribute to the growing evidence that there are
fundamental physiological limits to the spatial and temporal resolution
of functional neuroimaging techniques.  It is of interest to estimate
these limits using neurovascular modeling.  Several recent studies
have attempted to describe the spatial and temporal characteristics of
the hemodynamic response using physiologically based models of
blood vessel dynamics [6,7].  Other groups and we have modeled the
effect of blood oxygenation changes in venules on the fMRI signal
[8,9].  However, the link between spatial-temporal activity patterns of
the neuronal network and the reaction of the vascular network is
missing, since the majority of works done in this area follow the so-

called ‘mean field’ approach.  Note that energetic aspects of signaling
in the grey matter of the brain have been extensively investigated in
recent studies based on anatomic and physiologic data regardless
neural or vascular network architectures [10,11].  By contrast,
modeling of spiking activity of biological neurons and their networks
is well established, but does not describe the energy delivery
mechanisms (for introduction and references, see books [1,12-14]).
To bridge this gap, we consider both networks as coupled dynamical
systems.  The mechanism of thermodynamic coupling between the
networks constitutes an essential part of the modeling.  A novel
phenomenological approach is based on energetic considerations in
order to ease the modeling, which is inherently complex due to
numerous regulatory mechanisms (biochemical transformations and
neuronal feedback) involved.

MODELING AND SAMPLE RESULTS
In this research, the neuronal component of the model is

represented by a two-dimensional array of the FitzHugh-Nagumo
neurons coupled locally via diffusion [15].  A single FitzHugh-
Nagumo neuron of the network is described by one nonlinear and one
linear differential equations as follows
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where V(t) is a membrane potential, W(t) is a slow auxiliary variable
responsible for a spiking behavior, ε is a parameter of the temporal
scale of recovery processes, and a is a positive parameter such that
when a>1 the system has a single fixed point, whereas a limit cycle
occurs when a<1.  The excitation I(t) is due to the coupling  between
the nearest neurons and possibly external stimulus. The diffusion
coupling used in reference [15] is generalized by randomizing the
strength of interaction between the neurons around the couples.  At
small ε and a>1, the temporal shape of spikes resembles that of the
biological neurons.  Also, such a simplified neuron still gives a good
description of the refractory period of biological neurons.  The
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dynamics of the vascular component is governed by diffusion in a
discrete two-dimensional lattice.  The activation function of the
vascular lattice is assumed to depend monotonically on the power of
spiking in such a fashion that the diffusion is intensified as the power
increases. The power can be estimated by using the mechanical or
electrical analogues of the system (1).  The oxygen concentration is
chosen as a basic state variable of the vascular network.  The latter is
due to the presumably linear coupling between cerebral blood flow
and oxygen consumption in activated human cortex [16].  In our
simulations, neural and vascular components are represented by the
quadratic arrays of 476 neurons/elements.  The cyclic boundary
conditions are formulated for the boundaries of both arrays. This
makes the two-dimensional network surfaces topologically toroidal.
However, from the physical point of view, such a formulation
describes the spatially periodic states in infinite two-dimensional
arrays. In our numerical simulations, the neural network is subjected to
a rapidly oscillating periodic square-well current.  Such an external
stimulus is acting synchronously on four and six nearest neurons in
two spatially separated areas.  (Location of the stimulated neurons can
be identified from the diagrams for the oxygen flow represented in
Figure 1.)  The figure shows two different snapshots of the maps of
neuronal and haemodynamic activities.

Figure 1.  Maps of neuronal activity and the corresponding
oxygen flow’ levels at two consecutive sampling times

The time period between the two states is approximately equal to
that of a single neuronal spike.  Due to a large spatial resolution, the
neuronal activity patterns are propagating very fast whereas
distribution of the oxygen flow remains practically unchanged.  As a
result, the map of the oxygen flow may not reflect the local temporal
behavior of neuronal activity.  Moreover, the computer simulations
show that, if meeting each other, the patterns of neuronal activity
annihilate.  A possible explanation of this phenomenon is that a front
of activity cannot penetrate into the refractory zone behind another
front. Note that self-supported propagating waves in active (self

excited) distributed structures are known in the physical literature as
‘autowaves.’   In neurodynamic studies, patterns of neuronal activity
in large-scale inhibitory neuronal networks were described in the
article [17] based on 200 Hodgkin-Huxley neurons, however, the
spatial haemodynamic was not considered.

The neurovascular system modeling based on the Hodgkin-
Huxley neurons is currently being tested.
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