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ous and the cortical/cancellous boundaries were 

determined using a series of inner ellipses inside the outer ellipses. 
These inner boundaries were calculated to satisfy a set of constraint 
equations for maintaining equal cross-sectional moment of inertia and 
area between the model and the calculated CT density data. 
 A finite element mesh was created based on the geometry 
described above using a automatic procedure in the I-DEAS program. 
The volume inside the inner cortex was filled with brick elements 
representing cancellous bone. The cortical shell included two layers of 
brick elements. The model representing the original anatomy of the 
proximal human femur contains 15,360 brick elements with 15,633 
nodes.  Material properties of the bone were assumed to be isotropic 
and linear elastic, and were based on similar data reported in the 
literature.  The modulus of elasticity was 17 GPa for cortical bone and 
1.5 GPa for cancellous bone. Poisson’s ratio for the bone tissue was 
0.33. 
 Three geometric parameters of the femoral neck were 
investigated in this study: cortex thickness, length and neck-shaft 
angle.  The thickness of the superior cortex was reduced by 2 mm 
while that of the inferior cortex was increased by 2 mm in the femoral 
neck region to create the Thickness Model.  A model representing a 
longer femoral neck was created by widening the distance between the 
adjacent cross-sections in the femoral neck region with an 
accumulated total increase of 15 mm (Long-neck Model).  Another 
model representing a smaller neck-shaft angle was produced by 
increasing the angle between adjacent cross-sections in the region that 
includes the greater trochanter and neck, with an accumulated total 
increase of 15 degrees (Small-angle Model). 
 Stress analyses were performed on all three finite element models 
(the orginal model plus three geometric variations).  Kinematic 
constraints were applied to the most distal part of the shaft.  A single 
distributed vertical force of 2500 N was applied to the superior surface 
of the femoral head.  This loading condition was adapted to simulate 
the force transmitted through the hip joint when a person was in the 
stance phase of normal walking with no action of the abductor 
muscles.  Stress analyses, and pre- and post-processing were 
performed using the I-DEAS program. 
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RESULTS AND DISCUSSIONS 
 The stress distribution of the models were expressed in terms of 
von Mises stress (Figures 1-3).  For the normal model (Figure 1), 
maximum stress occurred at the inferior root of the femoral neck.  The 
maximum stress in the superior surface of the neck was approximately 
one third of that in the inferior surface.  The stress in this region was 
increased by approximately 65% and was only approximately 16% 
less than that in the inferior neck region in the longer neck model 
(Figure 2).  The overall maximum stress location however, shifted to 
the inferior lateral corner of the model boundary. 
 An even higher relative stress was sustained in the superior neck 
cortex in the small angle model (Figure 3).  The stress in the superior 
neck cortex was increased by approximately 85% compared to that in 
the original model and was only about 10% less than the overall 
maximum.   Changing the cortical thickness do not significantly alter 
the stress distribution in the femoral neck. 
 Previous biomechanical studies have determined that the ultimate 
strength of femoral cortical bone is approximately 45% higher in 
compression than in tension [8].  Other studies have show that the 
neck length can range by more than 30mm and neck-shaft angle by 
more than 30 degrees in a normal population [9].  The results from the 
present study  suggest that a normal person with a longer neck and 
lower neck-shaft angle in his/her femur can have a higher risk for the 
unstable tension stress fracture of the femoral neck. 
 
CONCLUSION 
 This analytical study demonstrated that bone geometry could be a 
critical factor in fracture risk for a human femoral neck.  In a normal 
femur under normal walking or running conditions, the compressive 
stress generally predominates in the femoral neck area; thus stress 
fracture of the femoral neck is not likely to occur.  However, a person 
whose femoral neck is longer and/or more horizontal is at a 
considerably higher risk for stress fracture of the unstable fracture type 
as demonstrated in this study. 
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Figure 1.  Stress distribution of the original femur model 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  Stress distribution of the proximal femur model 
with a longer neck 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Stress distribution of the proximal femur model 
with a lower neck-shaft angle 

 

2003 Summer Bioengineering Conference, June 25-29, Sonesta Beach Resort in Key Biscayne, Florida 


	INTRODUCTION
	MATERIALS AND METHODS
	RESULTS AND DISCUSSIONS
	CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES

