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INTRODUTION
Cancellous bone is a heterogeneous material with microstructural

features. Microscopic and macroscopic continuum methods can be
used for the mechanical modeling of such materials. The former
method consists of the construction of a detailed (e.g. voxel based)
Finite Element (FE) model that incorporates all the features of the
local architecture of the trabeculae. This has the advantage that all
microstructural effects are accounted for in a straightforward manner.
However, large cancellous bone specimens lead to very time-
consuming FE models. As an alternative, macroscopic continuum
models can be used. Classical continuum theory is the simplest
continuum model in which the stress at a material point depends only
on the strain at the same point. As a consequence, it cannot incorporate
microstructural size effects. To overcome this drawback, one may use
higher-order continuum theories. Cosserat (i.e. micropolar) continuum
theory is one of them. The present study addresses the application of
micropolar continuum theory for the mechanical analysis of cancellous
bone and the extraction of micropolar elastic moduli for cancellous
bone by a micromechanical analysis.

MICROPOLAR ELASTICITY
In addition to translations, micropolar continuum theory incor-

porates independent local rotations of material points. Consequently,
material can transmit both Cauchy stresses as well as couple stresses.
As a result, characteristic lengths appear in the constitutive equations.
These characteristic lengths depend on the microstructure of material
at hand.

The deformations for micropolar elasticity are given by
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where εij denotes the micropolar strain tensor, uj,i the displacement
gradients (where a comma indicates the partial derivative with respect
to one of the spatial coordinates), eijk the permutation tensor, κij the
curvature tensor and φk the microrotation vector. The general form of
the constitutive equations of a centro-symmetric (i.e. there is no

coupling between Cauchy stresses and curvatures, nor between couple
stresses and strains), linear elastic micropolar solid is
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where tij and mij are the Cauchy and couple stress tensors,
respectively, and the fourth order tensors Cijkl and Dijkl are called the
micropolar stiffness tensors.

CANCELLOUS BONE AS A MICROPOLAR CONTINUUM
Experimental evidence of micropolar elasticity in human compact

bone has been reported by Lakes and co-workers [1,2]. The existence
of micropolar effects for cortical bone in quasi-static bending has been
demonstrated in [1]. The issue of application of higher-order
continuum theories to mechanical analysis of bone (both cortical and
cancellous) has been addressed by Fatemi et al. [3]. In [3], a simplified
two-dimensional (2-D) bone-prosthesis configuration was analyzed
using a micropolar-based FE formulation. Results of this analysis
showed that the stress and strain intensities in the bone-prosthesis
interface are different from those predicted by classical elasticity.

It is well known that the micromechanical effects are most
important in regions of high strain gradients, e.g. near a hole or near a
bone-implant interface [1]. To show these effects, we take the example
of an artificial glenohumeral joint in which the cavity made in the
glenoid is larger than the length of the prosthesis keel (see Figure 1a).
To study the micromechanical effects on the stress concentration in
cancellous bone near the hole, this bone-prosthesis system is modeled
by a micropolar-based FE method. The prosthesis is assumed to be
fully bonded to the bone. Displacements and microrotations are fixed
to zero at the bottom and the prosthesis is loaded with a vertical force
at the top (see Figure 1a). The prosthesis is assumed to be linear
elastic, while the bone is taken to be strongly micropolar (see [3] for
the specific material properties used for the bone and prosthesis).
Figure 1b depicts the distribution of t22 in the bone. Dark areas
represent high stress regions. As expected, application of the
micropolar - based FE model results in a 40% lower stress concentra-
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Figure 1. (a) FE model of a bone-prosthesis system
(b) Results: stress distribution in bone ( 22t )

tion at the bone-prosthesis interface near the hole, as compared to a
classical elastic analysis [3]. Notice, for this example isotropic
material properties have been assumed in combination with a strong
micropolar effect. However, the micropolar elastic moduli (Cijkl and
Dijkl) must be evaluated from the microstructure of the material at
hand. Since it is very hard to do this experimentally, in the following,
a numerical identification framework is proposed to estimate the
micropolar elastic moduli of a cancellous bone specimen.

MICROPOLAR ELASTIC MODULI OF CANCELLOUS BONE
The issue of the identification of the micropolar elastic constants

of cancellous bone in the context of micromechanical analysis has
already been addressed by Fatemi et al. [4]. In this approach, it is
assumed that at the microscopic level the bone tissue is an isotropic,
Cauchy-type elastic material, whereas cancellous bone behaves as a
homogeneous, anisotropic micropolar-type continuum at the
macroscopic level. The effective elastic constants for the micropolar
continuum were determined from the response of a bone specimen,
whose microstructure was obtained from micro-CT scans (see Figure
2a) [4]. The identification procedure follows a rigorous homo-
genization approach and consists of the following steps: (i) Strains and
curvatures are prescribed through the appropriate displacement and
rotation boundary conditions. (ii) By equating the average work
applied to the bone specimen with the macroscopic equivalent strain
energy, the macroscopic stresses and couple stresses can be obtained
from the reaction forces and moments at the boundary. (iii) Relating
the applied strains to the stresses finally enables the evaluation of the
effective elastic constants (Cijkl and Dijkl).

This work [4] clearly showed that application of rotations at the
boundary of the cancellous bone sample leads to boundary layer
effects (Figure 2a: bending effects are high in dark regions). The
thickness of this boundary layer is independent of the size of the
material sample and is related to the microstructural length scale (e.g.
the average size of the trabeculae). The boundary layer effects will
result in a dependence of some of the effective properties Cijkl on the
size of the material sample [5]. In addition, it is shown that the
bending stiffnesses (Dijkl) increase with the increase of the material
sample size [5,6]. Clearly, this prohibits the evaluation of unique
properties, since the material sample size is not a physical length scale
in the problem. This led to the development of an alternative
identification procedure, to be explained in the following.

Going back to the macroscopic problem (Figure 1a), it is clear
from the specific loading configuration that the bone near the fully
bonded bone-prosthesis interface is loaded in shear. This is known to
lead to stiff boundary layers [7]. To account for these boundary layer

effects on the effective properties of cancellous bone, an optimization-
based identification procedure is proposed. The objective is to identify
the effective elastic constants on the basis of the minimization of the
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Figure 2. Boundary layer - Application of microrotation at
the boundary of (a) the micro-FE model of a cancellous

bone specimen and (b) the equivalent micropolar FE model.

difference between the total strain energy stored in the cancellous bone
sample (see Figure 2a) and its equivalent micropolar continuum model
(see Figure 2b). This minimization is performed on the sum of energy
differences of a number of appropriate boundary value problems,
leading to a fitted set of micropolar constants that can account for
boundary layer effects. Due to the fact that the boundary effects
(which are present in the microscopic continuum model, see e.g.
Figure 2a) exist in the micropolar continuum model (Figure 2b) as
well, it is anticipated that the estimation of the effective properties is
size independent. Work is in progress to show this.

DISCUSSION
The mechanical analysis of cancellous bone based on the

micropolar continuum theory was addressed. The micropolar effects in
regions near the bone-prosthesis interface lead to boundary layers and
an associated reduction in stress peaks, which are not present in case
of classical elastic behaviour. To account for these boundary layer
effects , an optimization-based identification procedure was proposed
as an alternative method for the more rigorous Cosserat
homogenization approach [4,6].
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