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INTRODUCTION 
 Alveoli are major units responsible for gas exchange in the lung. 
They are either directly connected to airways, or form an alveolar 
cluster at the terminal end of an airway. A typical size of an alveolus is 
about 200µm. A normal lung produces surfactants to reduce the 
surface tension in the alveoli making the lung more compliant to aid in 
breathing. A liquid layer usually coats the internal wall of alveoli and 
contains surfactants produced by alveolar. During partial liquid 
ventilation (PLV), surfactant replacement therapy (SRT), congestive 
heart failure (CHF), and respiratory distress syndrome (RDS), the 
liquid film can become thick and occupy an appreciable fraction of the 
alveolar volume, thus forming a diffusion barrier to transport.  The 
transport of gases, surfactants, cellular materials and other substances 
for such an alveolus is, consequently, will depend on convection due 
to alveolar breathing motions. 
        Most previous investigations for alveolar flows are focused on the 
dynamics of a thin alveolar liquid lining as occurred in a normal lung. 
In this aspect, Podgorski and Gradon [1] have modeled the flow for the 
alveolus directly connected to airways. Wei et al. [2] recently have 
explored the flow occurring in an alveolar cluster. These studies 
suggest that for a sufficiently low tension the fluid motion is favored 
to flow towards the alveolar opening, which could assist in cleansing 
processes. For clinical applications such as PLV, SRT, CHF and RDS, 
however, the thickness of the liquid layer could be thick or comparable 
to the size of an alveolus. The corresponding flow and transport could 
be significantly different from the previous thin-layer model. In the 
present work, we propose a thick-layer alveolar flow model to 
understand the underlying fluid transport mechanisms. 
 
APPROACH 
 Figure 1 shows our thick-layer, two-dimensional model. The fluid 
layer is partially filled in an alveolus and is pinned at the alveolar 
opening. The air-liquid interface contains insoluble surfactants. We 
assume a sufficiently strong surface tension and a small surfactant 
activity. This suggests that the deformation of the interface only 
responds to the conservation of the fluid mass. That is, the interface 

remains circular at all times. The breathing motion is assumed to be 
self-similar, i.e., the opening angle α is fixed during breathing. As 
such, we utilize the bipolar coordinates [3] and combine analytic and 
numerical techniques to solve the Stokes flow and the surfactant 
distribution.  
      Since the flow field couples to the surfactant conservation, we thus 
involve the following solution procedures. For a given surfactant 
concentration distribution Γ at a time t, we can calculate the surface 
tension gradient (i.e., Marangoni stress) along the interface. We then 
can calculate the corresponding flow field using the stream function 
formulation in the bipolar coordinates. This flow field is applied to 
update Γ at t+∆t by solving the surfactant transport equation 
numerically. The implicit Euler method is employed to discretize the 
time derivative. To discretize the spatial derivatives, the upwind and 
central difference schemes are performed for the first and second 
spatial derivatives, respectively. Initially, we start with a uniform Γ 
and conduct simulations until reaching steady, oscillatory states. In the 
present work, we are particularly interested in time-averaged flow 
patterns and results are presented as below.  
 
 
 
 
 
 
 
 
 
 
 
       
 
RESULTS AND DISCUSSIONS 
        First of all, one should notice that in the absence of surfactants, 
there is no steady streaming. This is because the Stokes flow of our 
system is reversible unless the interfacial deformation deviates from a 
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 Figure 1. A thick-layer alveolar flow model 
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circular shape. Figures 2 shows time-averaged flow patterns for 
various inspiratory to respiratory period ratios (I:E). We only display 
results in a half of the alveolus due to the symmetry. For I:E=1:1 as 
shown in Figure 2(a), the time-averaged streamlines show two 
vortices. This is a result of a non-zero time-averaged surfactant 
concentration distribution Γ , and the Marangoni stress tends to drive 
the flow from lower tensions (higher Γ ) for higher tension (lower 
Γ ). Since the minimum surface tension occurs at about the middle of 
the interface, it drives a surface flow toward the midline and the 
alveolar opening (higher tension regions). For a longer expiratory 
period I:E =1:2 as in Figure 2(b), the resulting time-averaged flow 
pattern only exhibits a single vortex with counterclockwise flow 
direction. In particular, I:E = 1:2 is more physiologically relevant. 
Figure 2(b) suggests that the surfactant tends to flow out of the 
alveolus, which is consistent with the previous thin-layer model [1], 
even though the interface is pinned. However for I:E=2:1 as in Figure 
2 (c), the flow pattern displays a primary vortex with an opposite flow 
direction in contrast to Figure 2(b).   
        Different time-averaged flow patterns by manipulating I:E ratios 
can be realized by examining the surfactant transport equation:     
                ( ) 0/1))(( 2 =Γ∇−⋅⋅∇Γ+Γ⋅∇+Γ sssst Pennu v , 
where n is the unit normal of the interface and Pes is the surface Peclet 
number. us is the surface velocity tangential to the interface. As we 
check for a system during the mid-inspiration, the expanding motion 
of the alveolus results in two competing effects on the surfactant 
transport. On the one hand, the surface velocity (the second term) 
tends to sweep surfactants from the alveolar opening toward the 
midline; on the other hand, the expansion of the surface area (the third 
term) tends to diminish the surfactant concentration near the midline. 
The competition leads to lower Γ near the midline toward which the 
surface flow thus favorably acts.  Similarly, the mid-expiration causes 
higher Γ near the midline from which the surface flow acts away. 
Since the flow tendency during inspiration or respiration has its own 
preference, the resulting time-averaged flow strongly depends on the 
I:E ratio. For example, longer expiration favors flow toward the 
alveolar opening, and the time-averaged flow pattern should be 
dominated by a counterclockwise vortex structure just demonstrated as 
in Figure 2(b).  
        We estimate steady velocity u*~ 10-4cm/s. The corresponding 
Peclet number Pe = u*a0/Dm =10-7/Dm, where Dm is the molecular 
diffusivity (cm2/s). For molecules with Dm lower than 10-7 cm2/s,     
the fluid velocity governs the steady transport.  
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Figure 2. The time-averaged streamlines. V=0.9, ∆∆∆∆=0.2, 
Ma=4.0,Pes=1.0. (a) I:E=1:1 (b) I:E=1:2 (c) I:E=2:1. 


