OVER TWO MONTHS HEPARINLESS VENOARTERIAL BYPASS IN GOAT WITH A NEWLY DEVELOPED CARDIOPULMONARY SUPPORT SYSTEM TREATED WITH A NOVEL ANTITHROMBOGENIC MATERIAL

Eisuke Tatsumi (1), Tomohiro Nishinaka (1), Yoshiyuki Taenaka (1), Nobumasa Katagiri (1), Hiroyuki Ohnishi (1), Yoshiaku Takewa (1), Akihiko Homma (1), Tomonori Tsukiyama (1), Yukihide Kakuta (1), Kyoko Shioya (1), Mitsuos Oshikawa (1), Yukitoshi Shirakawa (1), Toshihide Mizuno (1), Tadayuki Kamimura (1), Hiroshi Naito (1), Hisateru Takano (1), Masaki Sato (2), Susumu Kashiwabara (2), Hidenori Tanaka (2), Kazunari Sakai (3), Toshiaki Matsuda (3)

INTRODUCTION

Prolonged cardiopulmonary support (CPS) using membrane oxygenator such as extracorporeal membrane oxygenation (ECMO) or percutaneous cardiopulmonary support (PCPS) is a potent therapeutic option in treating the patients with life threatening respiratory and/or circulatory failure. The current CPS equipment, however, has several problems as limiting barriers to its popular use. Problems to be solved for applying the CPS system to prolonged support include: 1) thromboembolism originating from the system due to its poor antithrombogenic property, 2) hemorrhagic complication in association with necessitated systemic heparinization, 3) plasma leakage from microporous membrane oxygenator, 4) hematomatous reaction caused by direct blood-gas contact in such microporous membrane, and 5) poor durability of the centrifugal blood pump that contains shaft seal mechanism. If these problems are overcome, more liberal application of CPS to patient population with high risk of bleeding or with need of long-term support will come to be realistic. It is, therefore, of great clinical significance to develop such CPS system that can be used for over a month without systemic anticoagulation.

We have recently developed a revolutionary CPS system by accumulating novel technologies including a potent antithrombogenic surface treatment and an extremely durable oxygenator, and successfully conducted over-two-months heparinless venoarterial bypass in a series of animal experiments. This paper represents the details of our CPS system and the summary of animal experiments.

MATERIALS AND METHODS

Description of CPS System

The CPS system is composed of a compact oxygenator, a centrifugal pump, uptake and return canulae, and connecting tubings. The newly developed oxygenator (Platinum Cube NCVC®), Dainippon Ink and Chemicals, Tokyo, Japan), with 0.8 or 1.3 m² of membrane surface area with 95 or 130 ml of priming volume, consists of a special polyolefin-made hollow fiber membrane in which micropores are blind-ended to create an ultra thin dense layer of less than 0.2 µm thickness, thereby preventing plasma leakage with this unique microstructure [1]. The fibers are arranged at even intervals with woven vertical polyester threads to optimize the inter-fiber flow distribution. For blood pump system, we employed a commercially available progressive centrifugal pump (RotaFlow®, Jostra, Hirrlingen, Germany) that is driven by an outer motor via magnetic coupling and eliminating shaft seal mechanism to obtain long-term durability.

The entire blood-contacting surface of the CPS system is treated with a novel powerful heparin bonding material (T-NCVC® coating) to impart antithrombogenicity. T-NCVC® coating is characterized as an ionic complex of bonded heparin and aliphatic coupling reagents. It contains several kinds of long-chain dialkyl groups that enhance its hydrophobic properties, and constrain immobilized heparin from leaching into the circulating blood. By optimizing the combination of dialkyl groups, heparin molecules are hardly released when contacting to the blood but are retained on the material surface. As a consequence, differently from the other heparin bonding materials, T-NCVC® is endowed with high longevity and strong antithrombogenicity at the same time. Furthermore, T-NCVC® can be coated on any type of base material by simple coating procedure with low treatment cost.

Heparinless Long-Term CPS Animal Testing

Animal testing for heparinless long-term CPS was undertaken in eight adult goats weighing from 42 to 60 kg. The experimental protocol was as follows. Under general anesthesia, the uptake and return canulae were inserted into the right cervical vein and the right carotid artery, and the tip of multiple holed uptake canula was anterogradely advanced into the inferior vena cava at the diaphragm position. The CPS system was connected and positioned on the harness installed on the animals’ back, and the venoarterial bypass was instituted. Systemic anticoagulation was not conducted during the course of perfusion, except for a small dose of heparin at the time of canulae insertion (100 IU/kg) and minute amounts of heparin in the pressure monitoring lines (less than 2 IU/kg/h in total).

After the surgery, the animal was extubated, transported to the cage, and allowed to drink or feed, stand up or sit down, ad libitum. Bypass flow was maintained between 1.5 and 3.0 L/min, and an oxygen gas flow to the oxygenator was kept at the same rate as the bypass flow rate.

2003 Summer Bioengineering Conference, June 25-29, Sonesta Beach Resort in Key Biscayne, Florida
Inflow and outflow blood gases were periodically analyzed to assess the
respiratory capacity. Clotting status was evaluated by measuring
activated clotting time (ACT), partial thromboplastin time (APTT),
plasma-free hemoglobin, and thrombin time. Hematological studies
including platelet count, fibrinogen, antithrombin III, and clotting factor XIIIa. Hematological and blood chemical studies
including plasma-free hemoglobin were also performed periodically.
At the end of the experiment, each system was disassembled for the inspection
of thrombus formation, and each animal was subjected to postmortem
examination.

RESULTS
Overall results of the experiments are summarized in Table 1. All
animals underwent the installation surgery uneventfully, and
demonstrated good general condition without any untoward incident till
they were electively sacrificed. The CPS system could be continuously
perfused without systemic anticoagulation during the scheduled periods
of as long as 65 days. Bypass flow rates ranged between 1.8 and 2.9
L/min on average. Gas-exchange function was kept stable at around 90-
150 ml/min in O2 transfer and 60-140 ml/min in CO2 removal,
which were sufficient level for provided blood flow throughout the
experiments. Plasma leakage was not observed in any case.

The ACT and APTT levels were almost constant at 100-130 sec
and 40-60 sec, respectively, and the blood heparin concentration was
less than detectable level at any time. There were no substantial changes
in platelet count (35-52 × 104 /µl), fibrinogen (200-300 mg/dl),
antithrombin III (120-140%), and clotting factor XIIIa (140-175%)
for the entire course of experiments. Plasma free hemoglobin
(always less than 20 mg/dl) and the other hematological and blood
chemical data also remained normal.

No perceptible thromboembolism was found at necropsy in any
animal. In macroscopic and microscopic views, the hollow fibers of the
oxygenator were mostly free of thrombus formation against prolonged
perfusion without systemic anticoagulation. Although a few clots were
found mainly in the marginal area of the inlet and outlet ports. The other
parts of the CPS circuit including the centrifugal pump and canulae
were completely free of thrombus.

DISCUSSION
Characteristic features of our CPS system are recapitulated as
excellent long-term durability, and capability of heparinless perfusion.
Excellent long-term durability is attributable to the employment of the
progressive centrifugal blood pump containing no shaft seal
mechanism and, moreover, the newly developed oxygenator made of
special hollow fiber membrane. Microporous membrane, most
commonly used in the current membrane oxygenator, has disadvantages
including plasma leakage accompanying the loss of hydrophobicity and
other deleterious effects caused by direct blood-gas contact. In the
present study, the longevity and reliability of our newly developed
oxygenator were satisfactorily demonstrated by continuous perfusion
for up to 65 days without any manifestation of plasma leakage.
Furthermore, this distinctive feature provides the likelihood of setup and
storage in preprimed condition [2]. Preprimed setup, which is so far as
is known attempted for the first time by our group, not only facilitates
quick implementation of CPS in emergency situation but probably
expedite usual prophylactic or elective application.
Bleeding accompanying systemic heparinization remains the most
common problem in ECMO or PCPS [3]. Clotting formation inside the
device and consequently necessitated systemic heparinization have been
the major barriers to the prolonged use of CPS system, rendering the
risk of bleeding and thromboembolism. Bleeding in sites of cannulae
insertion, surgery, or injury makes the management of patients extremely difficult. In the present study, our CPS system coated with T-
NCVC® demonstrated excellent antithrombogenic property. Within a
perusal of the relevant literatures, our experience of 65 days use of the
CPS system is the exceptionally longest record of continuous single
system use without systemic anticoagulation. This system will provide
a privilege to avoid bleeding by minimizing or even eliminating the
necessity of systemic anticoagulation, and will open the door to
candidates for emergency CPS particularly those with trauma and
cerebrovascular bleeding in whom systemic heparinization has been
contraindicated. It may also be used for long-term CPS in various
clinical settings such as bridge to lung or heart-lung transplantation.

While our heparin treatment technique was thus proved to be of
great efficacy, still necessary for extermination of thrombus formation
is refinement of the blood flow condition within the AL from
hydrodynamic point of view. Another research project in our institute,
therefore, focuses on incorporating a centrifugal pump with an
oxygenator to be a single device in an effort to eliminate channeling or
necrosis of the blood flow, as well as to reduce blood contacting
surface area and priming volume [4]. The prototype device was
confirmed to provide ideal inside flow conditions, and the surface
modification technique used in the present study is being applied as the
next step in the development of this device.

In summary, a durable and thrombo-resistant CPS system has been
developed and evaluated in venoarterial bypass chronic animal
experiments. The system could be perfused for over two months
without systemic anticoagulation. The favorable results of this study
strongly indicate that the newly developed CPS system has an ability to
be used for prolonged heparinless ECMO or PCPS.

REFERENCES
1) Akasu H, Anazawa T: Development of a membrane oxygenator
using novel polyolefin hollow fibers with blind-ended micropores.
Jpn J Biomater 1990; 8: 141-147
2) Tatsunami E, Taenaka Y, Takano H, Nishinaka T, Nishimura T,
Katagiri N, Yoda T, Kotake M, Wada T: A preprimed artificial
lung for emergency use. Artif Organs 2000; 24: 108-113
3) Perchinsky MJ, Long WB, Hill JG, Parsons JA, Bennett JB:
Extracorporeal cardiopulmonary life support with heparin-bonded
circuitry in the resuscitation of massive injuries trauma patients.
4) Tatsunami E, Takano H, Taenaka Y, Nishimura T, Kakuta Y, Nakata
M, Tsukiyama T, Nishinaka T: Development of an ultracompact

Table 1 Summary of Heparinless Venoarterial Bypass Animal Study with T-NCVC® Treated Cardiopulmonary Support System

<table>
<thead>
<tr>
<th>No.</th>
<th>Body weight (kg)</th>
<th>Bypass flow (L/min)</th>
<th>Anticoagulants</th>
<th>Device failure</th>
<th>Plasma leakage</th>
<th>Condition</th>
<th>Bypass duration (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>42</td>
<td>2.0 - 2.9</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>good</td>
<td>41</td>
</tr>
<tr>
<td>2</td>
<td>45</td>
<td>1.7 - 3.2</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>good</td>
<td>65</td>
</tr>
<tr>
<td>3</td>
<td>50</td>
<td>1.8 - 2.2</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>good</td>
<td>35</td>
</tr>
<tr>
<td>4</td>
<td>58</td>
<td>2.0 - 2.2</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>good</td>
<td>36</td>
</tr>
<tr>
<td>5</td>
<td>60</td>
<td>2.0 - 2.5</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>good</td>
<td>60</td>
</tr>
<tr>
<td>6</td>
<td>60</td>
<td>2.6 - 2.8</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>good</td>
<td>28</td>
</tr>
<tr>
<td>7</td>
<td>58</td>
<td>2.0 - 2.8</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>good</td>
<td>34</td>
</tr>
<tr>
<td>8</td>
<td>60</td>
<td>2.0 - 2.5</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>good</td>
<td>39</td>
</tr>
</tbody>
</table>