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INTRODUCTION 
 Soft tissue structures and associated tissue engineered (TE) 
materials can be studied using models based on porous media/mixture 
theories in which multiple charged mobile species are dissolved in a 
mobile fluid (f) that saturates the “pores” in a highly deformable 
“solid” fibrous matrix (s) in which fixed charge is present—
represented by fixed charge density (FCD).  This class of analysis has 
been utilized for various biological structures including arterial tissue 
[1], articular cartilage [2], and TE constructs [3].  Finite element 
models (FEMs) have been developed for the study of these complex 
problems.  Current theoretical models identify various forms for the 
material properties that can be measured.  Here these properties are 
identified and related mathematically so that they may be utilized in 
various FEMs.  Examples are given to illustrate the effects of finite 
strain and material properties in FEMs of soft tissue structures. 
 
THEORY 
 The continuum formulations can be Eulerian or Lagrangian for 
quasi-static, finite straining of anisotropic materials with no body 
forces.  For clarity, consider three charged mobile species, denoted by  

, ( ), ( ), (p m b )α β = + − ±  that are dissolved in an incompressible 
fluid (water) with concentration, / fc d or n dVα α= c Jncα α=  and 
valence zα .  Assuming the solid is incompressible and saturated by 
the fluid, the porosity, n d  where 

 is the initial (measured) porosity.  The FCD, 
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initial (measured) FCD. Electroneutrality requires that 

 and an electrical potential, 
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µ  will develop or 
can be applied to the material.  The displacements, solid velocity, and 

relative fluid/species velocites are , i iiu x X= − v vsi iu= = i , and 

 with v (v v )r s
i i inγ γ= − , , , ,f p m bγ δ = .  The deformation 

gradient, /ij i jF x X= ∂ ∂ ; volumetric strain, 0/J dV dV= ; Green’s 

strain, 1 2 (ij ki kjE F )ijF δ= − ; and Finger’s strain, 1 1
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The total stress (Cauchy), ijσ  is related to the solid stress, 
ij
sσ  and 

fluid stress, f
ij p f ijσ δ= −  (hydrostatic fluid pressure, fp ), as 
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er

i i
α α

α= = Σ

iu

.  The mixed models are based on continuous 

“primary” fields  and generalized potentials * *,γ ξµ ν , etc. (see 

below) that are continuous; whereas the “secondary” fields fp e,µ , 

and cα  may be discontinuous at material interfaces.  The Eulerian 
phenomenological equations are a basis for all models beginning with 
the 

(v v )sxi ij jfξ ξη η
ηµ = Σ − , , ,f p m b

,) ]s s
ji jnµ σ[(1xi = − + , j j , ,s

T iµ ,[ ]f f
xi jnµ σ=

, ,
f f f

T inj jin σ ρ µ− − ,( )e
x c

α α+ izµ µ

f ξ ξ η≠

, 0ji jσ = 2 *
,in cγ µ , , , ,f p m bδ =

ff f
ij ij

f
ijf
α−

     MIX (Mixture) Model  
           ,   ( , ,sξ η = )     j

(1 )f s
in nσ ρ− − i

; and i nc M Fα α α= − µ  with 

material properties: ij jif
η ηξ= ; 0,ijf

ξη = . Introducing 

definitions of total stress and relative velocities yields the 

j

 
     PM (Porous Media) Model 
   ,   v r

ij jaγ γ
δΣ− = ;    (γ )     δ δ

with properties:  s
ijf
fa f α

α= + Σ , f f
ij ija aα α= = , etc.  Now solve 

for relative flux in the last two PM equations and introduce the relative 
flux definitions to obtain 
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      MPMT (Mixed Porous Media Transport) Model.  
          , 0ji jσ = ,     *
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.  The total fluid pressure/potential,  and 
the electro-chemical potentials 
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( )
 and chemical potential 

0 RT ln cα α αγ αµ µ= + to formulate the  
 
     PMT (Porous Media Transport) Model. 
Again 
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Fick’s law  is   .          The 

material property functions are the hydraulic permeability, 
; the chemical and electrical 

diffusivities, 
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β= Σ β α= .  The PMT properties are related to 
ijML
γδ  as 

ff ff
ijM ijL k= , etc.  Note that ABAQUS FEMs are based on an Eulerian 

view of the material as a porous hyperelastic material (PHE) that is 
saturated by an incompressible mobile fluid with no mobile species.  
 
     EMPMT (Electrical Mixed Porous Media Transport) Model. 
Iintroducing relative current as one flux in r

i M
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modified potentials defined as *
MT
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 (with non-zero terms 
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     Lagrangian EMPMTS MODEL.  The field theory includes the 
conservation laws   T    (, 0ji j = ji ik S= jk
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constitutive equations, e.g. “effective” stress  
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 that  can 

represent various materials, e.g. for TE materials,  may take the 

form for a stiff crushable foam  (e.g. ePTFE scaffolds).  Compliant 
materials (e.g. arteries) may be hyperelastic with , 

e.g. “Fung’s” exponential form, U U , 
E
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FINITE ELEMENT MODELS 
 Lagrangian EMPMT FEMs are based on elemental interpolations 

u
i Nu N u= Ni , , ,i j
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N j Niu N u= , * *

M MNξ ξ ξν ν= , , ,j M jN M
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Galerkin residuals are 
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 that are 

assembled, boundary/initial conditions imposed, a time integrator 
applied, and a transient solution for the primary fields is obtained 
using iterative predictor-corrector algorithms.  Iteration is also used to 
determine the secondary fields (  , ,p cαµ ) at the Gauss points in 
each finite element. 
 
REPRESENTATIVE RESULTS 
 
An ABAQUS FEM of a large arterial wall was used to predict the 
relative fluid flux at various pressures in the cardiac cycle.  Figure 1 
shows fluid flux (at P = 120 mm Hg) that is significantly different 
from fluid flux associated with constant pressure, indicating a complex 
convection transport field in the wall during cyclic pressurization. 
 
 
 
 
       Figure 1.  ABAQUS FEM of Arterial Wall Fluid Flux 
 
Figure 2 shows the development of the concentration field for a single 
neutral species in a 1D EMPMT FEM where large strains greatly 
reduce the porosity and cause the concentrations to be markedly 
increased (due to reductions in the amount of fluid). 

 
                      c X                                     ( , )t ( , )n X t
 
 

 
 
 

      
      Figure 2. EMPMT FEM of Concentration and Porosity 
 
These and other examples demonstrate the capability of these FEMs 
based on mixed PMT models to simulate coupled structural-transport 
in complicated biological structures where finite strain occurs.  These 
procedures are currently being used to study vascular wall mechanics 
and the design of TEVGs including structural response and species 
transport. 
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