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ABSTRACT 
 
 The Brownian fluctuations of an atomic force microscope (AFM) 
cantilever with its tip coupled elastically to a surface have been 
analyzed. Measuring the changes in the tip fluctuations in the presence 
and absence of coupling thus enables determination of the elastic 
modulus of the coupling element. 
 
INTRODUCTION 
 
 AFM has been widely used to measure mechanical properties of 
biomolecules and cells. Typically, such measurements involve 
monitoring the sample deformations in response to controlled applied 
forces. Because biomolecules and cells are usually highly compliant, 
extremely soft cantilevers must be used to apply ultra-low level of 
forces. Consequently, such experiments are susceptible to thermal 
excitations, manifesting as force and displacement fluctuations that 
reduce measurements accuracy.  
 
 One can try to take advantage of thermal excitations rather than 
being limited by them. This is exemplified by the thermal fluctuation 
method, which has been commonly used for calibration of cantilever 
spring constant [1]. The method is based on the analysis of the 
cantilever response to thermal excitations. Coupling a molecule or a 
cell to the cantilever tip, either by stretching or by indentation, will 
alter its response characteristics. An understanding of the dependence 
of the system responses on the mechanical properties of the coupling 
element thus provides an alternative mean for measuring such 
mechanical properties. We have solved such dependence for the 
simple case in which the coupling element can be treated as elastic. 
 
GOVERNING EQUATIONS 
 
 Commercial cantilevers are either rectangular or V-shaped, as 
depicted in Fig. 1 (not to scale).  To be as general as possible, let us 
consider  an  arbitrarily  shaped  plate  with  uniform  thickness  h  and 

 
Figure 1. Schematic of a surface-coupled V-shaped AFM 

cantilever loaded by thermal excitations.  The coupling of the 
cantilever tip and the surface is modeled by a string with a spring 

constant k.  A  Side-view.  B  Top-view. C Mass-spring model. 
 
Young’s modulus E.  The equation of motion in the lateral direction 
for small deflection z of the cantilever can be written as 
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where t is time, p denotes a point in the x-y plane (Fig. 1 B), ∆2 ≡ 
∂2/∂x2 + ∂2/∂y2 is the LaPlace operator, ρ is the density, ζ  is the 
damping coefficient, and D = Eh3/[12(1 – ν2)] where ν is the Poisson’s 
ratio, is the flexural rigidity. The external load F represents thermal 
excitations and satisfies the definition for white noises: 
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where <·> denotes averaging over time and space and σ denotes the 
strength of the thermal excitations. The cantilever tip p0 is coupled to 
the surface by a spring, which is included in Eq. 1 as a point load 
whose magnitude is proportional to the deflection z with the 
proportionality constant being the spring constant k. For the boundary 
conditions, a built-in edge is on the opposite side of the tip and the 
remaining edges are free. 
 
RESULTS 
 
 The total potential energy of the system can be written as the sum 
of two terms: the bending energy of the plate and the elastic energy of 
the spring. 
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Modeling the continuous system by a discrete single degree-of-
freedom mass-spring system using the tip deflection as the only 
dependent variable, the potential energy can be expressed as 
½Kz2(p0,t) where K is an equivalent spring constant. If the tip 
deflection is solely caused by thermal excitations, at thermodynamic 
equilibrium the equipartition theorem applies, which requires 
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where T is the absolute temperature and Bk  is the Boltzmann constant. 
For rectangular and V-shaped cantilevers in the absence of tip 
coupling, it has been shown that K = kc ≡ F0/z(p0) where F0 is a 
constant load applied to the tip and z(p0) is the corresponding static 
deflection [2, 3]. In other words, K is identical to the static cantilever 
spring constant, which is the basis for calibration of the cantilever 
spring constant [1].  
 
 The present work extended these previous results to the general 
case of arbitrarily shaped cantilever in the presence of an elastic 
coupling at the tip. Using eigenmode expansion it can be shown that 

               kkK c +=    (5) 
In words, under thermal excitations, the system behaves as if the 
cantilever spring and the coupling spring are in parallel, as depicted in 
Fig. 1 C.  It follows from Eqs. 4 and 5 that 
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where the subscripts a and p denote, respectively, the deflections 
measured in the absence and present of coupling. 
 
 Because most AMF monitor changes in the positions of the laser 
light that is reflected from the cantilever tip, it is usually the tip 
rotation (∂/∂x)z(p0), not the tip deflection z(p0), that is directly 
measured. Under static loads, the two can be related; and the 
relationship depends on the cantilever shape. For instance, in the 
absence of tip coupling and when the static load is applied to the tip, 
z(p0) = (2/3)L(∂/∂x)z(p0), where L is the length of the rectangular 
cantilever. Under dynamic loads, both deflection and rotation become 
functions of time and the static relationship defines a virtual deflection 
z* ≡ (2/3)L(∂/∂x)z(p0). In general, the mean square deflection 
differs from the mean square virtual deflection. For surface-
coupled rectangular cantilevers under thermal excitations, we have 
shown that 
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Setting k = 0 or k → ∞ respectively reduces Eq. 7 to two special cases, 
which are the cases of free or pined end studied by Butt and Jaschke 
[2]. It follows from Eqs. 4-7 that, for rectangular cantilever, the spring 
constant of the coupling element can be expressed as 
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 The cantilever is continuously being loaded by thermal 
excitations that add energy to the system. For it to be in 
thermodynamic equilibrium with a bounded mean potential energy, the 
energy has to be dissipated to the surroundings via viscous damping. 

This implies a relationship between the damping coefficient ζ and the 
strength of the thermal excitations σ, which we have shown to be 

   ζσ TkB42 =    (9) 
Equation 9 is a special form of the fluctuation-dissipation theorem. 
 
DISCUSSION AND CONCLUSION 
 
 The present analysis has provided the theoretical basis for 
measuring the elastic property k of a molecule or a cell that couples the 
AFM cantilever tip to a rigid surface from the changes in the mean 
square fluctuations of the tip deflection. We have recently used this 
method to measure the molecular elasticities of P-selectin bound to 
two forms of P-selectin glycoprotein ligand 1 (PSGL-1) and several 
anti-P-selectin antibodies [4]. The results so obtained are in good 
agreement with those obtained by using controlled force to stretch 
these molecular complexes. Thus, the present method has been 
validated experimentally. 
 
 Equation 5 indicates the parallel arrangement equivalency of the 
cantilever spring and the coupling spring under thermal excitations. In 
many AFM experiments, a periodic excitation is applied to the 
cantilever and the changes in the tip responses in the presence and 
absence of coupling is used to determine the viscoelasticity of the 
sample that the cantilever tip probes [5, 6]. It was generally assumed 
that under such situation, the cantilever spring and the coupling spring 
were in parallel, based on a single degree-of-freedom mass-spring 
model [7]. This assumption is invalid in general. However, it is 
approximate when the excitation frequencies are close to the system 
resonant frequencies and when the spring constant ratio k/kc is small 
(<1). We have shown that Eq. 5 is valid because the excitations are of 
the properties of white noises, which contain broad frequencies and are 
spatially and temporal independent (cf. Eq. 2). Moreover, the 
equipartition theorem is only applicable to thermally excited systems.   
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