INTRODUCTION

Small airways consist of tapered, curved, branching tubes of a range of length and diameter. Important respiratory functions, such as airway dynamics, airflow structure, surfactant transport, and particle deposition occur in the small airways. Consequently, airway morphometry has been extensively studied [1-4]. However, previous techniques, such as the fixed preparation methods, deform the geometry during sample preparation. Moreover, small airways are flexible tissue, and thus their geometry varies markedly during respiration. Previously we developed a two-step method to visualize small airways in detail by staining the lung tissue with a radiopaque solution and then visualizing the tissue with a cone-beam microfocal X-ray CT system (micro-CT), without dehydration and fixation of the tissue [5]. In this study, we visualized and analyzed the three-dimensional morphometry of small airways using our proposed technique.

MATERIALS AND METHOD

Animal Preparation

After male fourteen Wister rats (300 ± 30 g) were anesthetized with pentobarbital sodium (50 mg/kg ip), they were exsanguinated and cardiac arrest was induced by 0.2 g/ml KCl solution. The water mixed this a radiopaque media, Sodium diatrizoate (Sigma Chemical, St Louis, MO) in the quantity 0.8 g/ml, was induced into an inferior vena cava. After the solution was stained to lung tissue for 1 h, the lungs were removed.

Imaging

The small airways were visualized by a microfocal X-ray CT system (MCT-CB100MF, Hitachi Medical Corp., Japan, Tokyo). The Resolution was 480 × 480 pixel and 1 voxel size was 14 µm. In one rotation, the number of slice images was obtained 200 images. The excised rat lung induced by the radiopaque solution was placed into a Plexiglas cylinder in. It was mounted on the rotation stage, and it took 2.5 min to rotate around 360°.

RESULTS AND DISCUSSION

Fig. 1 is a representative micro-CT image (1 pixel is 16 µm) and three-dimensional reconstruction images using an isosurface approach (Diamter range: 300 µm ~ 170 µm). In this study, we visualized and analyzed the three-dimensional morphometry of small airways using our proposed technique.

THREE-DIMENSIONAL VISUALIZATION AND MORPHOMETRY OF SMALL AIRWAYS FROM MICROFOCAL X-RAY COMPUTED TOMOGRAPIY

Toshihiro SERA (1,5), Hideki FUJIOKA (2), Hideo YOKOTA (3), Akitake MAKINOUCHI (3), Ryutaro HIMENO (3), Robert C. SCHROTER (4) and Kazuo TANISHITA (1)

(1) Center for Life Science and Technology, Keio Univ., Yokohama, JAPAN
(2) Biomedical Engineering Department, University of Michigan, Ann Arbor, MI
(3) Advanced Computed Center, Institute of Physical and Chemical Research (RIKEN), Wako, JAPAN
(4) Department of Bioengineering, Imperial College of Science, Technology and Medicine, London, UK
(5) Life & Environmental Science Division, Japan Synchrotron Radiation Research Institute (JASRI), Sayo, JAPAN

Measurements

To investigate the morphometry of the small airways, we identified the cross-sections of the small airways using the threshold method from micro-CT images and then analyzed using the three-dimensional thinning algorithm described by Toriwaki ea al. [6].

The airway has approximately the shape of a hollow cylinder network and we calculated the diameter \(D\), length \(L\), branching angle \(\alpha\), and gravity angle \(\beta\) between the gravity direction and airway vector from airways skeletons. In this study, \(\beta\) was analyzed the only downward airways to distal side.

Fig. 2 shows the original outlines of the cross-sections and the middle lines, and it was apparent that the middle lines agreed with the outlines. In this study, the thinning algorithm is two-step to make the
Euclidean distance transformation and then check deletability of the points in sequence that the Euclidean distance is small. Using this algorithm the middle lines were correctly calculated without changing the topology of the airways even if the original images were shifted and rotated from the vertical direction.

Using these middle lines we calculated the average diameter D and average length L as a function of the Weibel’s airway generation Z ranging from 8 to 16 in Fig. 4. The average diameter and length decreased by an exponential function like Weibel data and was fitted to the Eq. (1) and (2).

$$D(Z) = 1.1104 \cdot 2^{-0.1777Z} \quad (1)$$

$$L(Z) = 1.7015 \cdot e^{-0.0811Z} \quad (2)$$

The average diameter ratio (daughter diameter / parent diameter) in small airways was 0.89 and the average ratio length to diameter (L/D) was 2.26 ranging from 2.02 to 2.63.

The branching angle α and gravity angle β were approximately constant at $133.3 \pm 23.8^\circ$ and $63.9 \pm 13.2^\circ$ over the generations studied. It is well known that the airways branch asymmetrically and therefore the symmetry of the bifurcation A_S was defined as follows.

$$A_S = \alpha_1 \cdot \alpha_2 \leq \alpha$$

α_2 was defined as the pair branching angle of α_1, and α_1 was major and α_2 was minor ($\alpha_1 > \alpha_2$). A_S decreased with Z, consistent with the geometry data presented by Phalen et al. [2]. And A_S proportionally decreased with α_2 and was linearly fitted to the Eq. (4).

$$A_S = -0.0131 \cdot \alpha_2 + 2.8791$$

Eq. (3) indicated that one branching angle (α_1) decided the other pair branching angle (α_2) and in the case of the symmetric bifurcation ($\alpha_1 = \alpha_2$) the branching angle was approximately 140°.

This method does not require dehydration and fixation to visualize small airways in detail in “near” physiological conditions, and so we visualized the same airways in various lung volumes (Fig. 4). Fig. 5 shows the diameter increment as a function of the default diameter at FRC. For many years the lung compliance has been evaluated from the macroscopic viewpoint and described particularly in terms of the pressure – volume curve; however using this method compliance can be investigated at the microscopic local level of small airways and alveoli. Furthermore this morphometry change during respiration will open the way to new research of the pulmonary dynamics.

REFERENCE