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ABSTRACT 
 
 Massage therapy is a hands-on manipulation on the soft tissues of 
the body including blood vessels, muscles, connective tissue, tendons, 
ligaments and joints. It has a history of over 2000 years in China and 
has been widely accepted as an effective therapy which is comfortable 
and free of side effect. It is becoming an acceptable therapy for 
rehabilitation and disease prevention. 
 Considerable work for massage has been reported in the past 
twenty years [1,2]. Most of them were carried out on various aspects 
of clinical application. Research on its hemodynamic mechanism has 
been lacking. In this paper, a kind of massages called rolling 
manipulation is investigated. It is one of the most effective 
manipulations of Chinese massages. With this manipulation, the artery 
under the skin, where the operator applied the force, forms a 
constriction which moves with his hand. Its main benefits arise from a 
mechanical behavior: promoting blood circulation. In clinical studies, 
data has show that after the application of rolling manipulation, the 
blood flow rate of the recipient in the vessel under the target region 
increases by about 50%. 
 In this paper a model (Fig.1) of the flow through a blood vessel 
with axially moving constriction, has been developed to understand 
the mechanism by which the flow rate increases, from the perspective 
of hemodynamic principles. However, a complete explanation may be 
complicated and may involve some biochemical reactions and the 
functioning of nerve system. These non-hemodynamic factors should 
also be taken into consideration in seeking to understand the 
therapeutic effects of Chinese massage.   
 However, the motivation for the present work is not limited to 
application in massage because the present flow model can be 
extended to investigate a general flow field involving tubes with a 
moving constriction. There are a many studies [3-6] on such flows, an 
example being stenotic flow. However, only a few of study on stenotic 
flow considered it in motion. In most of these studies, assumptions 
have been made, like lubrication flow, mild constriction, low Reynolds 
number, or simple pressure-flow conditions at inlet. In this paper a 

model is developed which solve the full Navier-Stokes (N-S) equation 
by using an Arbitrary Lagrangian Euler Finite Element Method [7] 
(ALE-FEM) which can handle flow with moving boundary at 
moderate Reynolds number and large constriction amplitude.  
 Attention is given to the effect on the flow rate and wall shear 
stress created by the constriction characteristic parameters such as 
moving frequency and constriction coefficient. The numerical results 
show that the constriction moving frequency, or the frequency of 
rolling manipulation, has significant effect on the flow wave form 
(Fig.2) and wall shear stress (Fig.3). Higher frequency will lead to 
higher wall shear stress while the average flow rate remains relatively 
constant. The constriction coefficient, which controls the severity of 
the constriction, is another controlling parameter in rolling 
manipulation; it shows a significant effect on the flow rate (Fig.4) and 
wall shear stress (Fig.5). The magnitude of wall shear stress rises with 
the increase of constriction coefficient while the average flow rate 
decreases rapidly. Since wall shear stress is of special interest in the 
clinical applications, these numerical results may provide some data 
that may be taken into consideration when massage is used in therapy.  
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Fig.1. Model of blood vessel with moving constriction 
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Fig.2 Flow rate in one cycle for various constriction moving 
frequency f and at ε = 0.5 
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Fig.3 Maximum wall shear stress for various constriction 
moving frequency f and at ε = 0.5 
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Fig.4 Flow rate in one cycle for various constriction 
coefficient ε and at f=120/min 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

t/T

m
ax

im
um

 s
he

ar
st

re
ss

/a
ve

ra
ge

 s
he

ar
st

re
ss

e=0.1
e=0.2
e=0.3
e=0.4
e=0.5

 

Fig. 5 Maximum wall shear stress for various constriction 
coefficient ε and at f=120/min 
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