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Abstract. The 2-adic valuations of Bell and complementary Bell numbers is
determined. The complementary Bell numbers are known to be zero at n = 2
and H. S. Wilf conjectured that this is the only case where vanishing occurs.

N. C. Alexander and J. An prove (independently) that there are at most two
indices where this happens. This paper presents yet an alternative proof of
the latter.

1. Introduction

The Stirling numbers of second kind S(n, k), defined for n ∈ N and 0 ≤ k ≤ n,
count the number of ways to partition a set of n elements into exactly k nonempty
subsets (blocks). The Bell numbers

(1.1) B(n) =
n∑

k=0

S(n, k)

count all such partitions independent of size and the complementary Bell numbers

(1.2) B̃(n) =

n∑

k=0

(−1)kS(n, k)

takes the parity of the number of blocks into account. The exponential generating
functions are given by

(1.3)

∞∑

n=0

Bn
xn

n!
= exp(exp(x)− 1) and

∞∑

n=0

B̃(n)
xn

n!
= exp(1− exp(x)).

In this paper we consider arithmetical properties of the Bell and complementary
Bell numbers. The results described here are part of a general program to describe
properties of p-adic valuations of classical sequences. The example of Stirling num-
bers is described in [3], the ASM numbers that count the number of Alternating
Sign Matrices appear in [14] and a not-so-classical sequence appearing in the eval-
uation of a rational integral is described in [2, 9]. On the other hand, much of our
interest in the valuations of the complementary Bell numbers is motivated by

Wilf ’s conjecture: B̃(n) = 0 only for n = 2.
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The guiding strategy for us is this: if we manage to prove that ν2(B̃(n)) is finite
for n > 2, the non-vanishing result will follow. The authors [4] have succeeded in
employing this method to prove that the sequence

(1.4) xn =
n+ xn−1

1− nxn−1
, starting at x1 = 1

only vanishes at n = 3. The more natural question that xn 6∈ Z for n > 5 remains
open.

The following notation is adopted throughout this paper: for n ∈ N and a prime
p, the p-adic valuation of n, denoted by νp(n), is the largest power of p that divides
n. The value νp(0) = +∞ is consistent with the fact that any power of p divides

0. As an example, the complementary Bell number B̃(14) = 110176 factors as

25 · 11 · 313, therefore ν2(B̃(14)) = 5 and ν3(B̃(14)) = 0. Legendre established the
formula

(1.5) νp(n) =
n− sp(n)

p− 1

where sp(n) is the sum of the digits of n in base p.

The exponential generating function (1.3) and the series representation

(1.6) B̃(n) = e

∞∑

r=0

(−1)r
rn

r!
,

as well as elementary properties of the complementary Bell numbers are presented

in [15]. The numbers B̃(n) also appear in the literature as the Uppuluri-Carpenter

numbers. Subbarao and Verma [13] established asymptotic growth of B̃(n), showing
that

(1.7) lim sup
n→∞

log |B̃(n)|

n log n
= 1.

The non-vanishing of B̃(n) has been considered by M. Klazar [7, 8] in the context
of partitions, by M. R. Murty [10] in reference to p-adic irrationality. Y. Yang [16]

established the result |{n ≤ x : B̃(n) = 0}| = O(x2/3) and De Wannemacker et al

[12] proved that if n ≡ 2, 2944838 mod 3 · 220, then B̃(n) 6= 0. The main result of

this paper is that B̃(n) = 0 has at most two solutions. This has been achieved by
different techniques by N. C. Alexander [1] and Junkyu An [5]. Our interest in the
non-vanishing questions comes from the theory of summation in finite terms. The
methods developed by R. Gosper show that the finite sum

(1.8)
n∑

k=1

k!

does not admit a closed-form expression as a hypergeometric function of n. The
identity

(1.9)

n∑

k=1

kak! = (−1)a+1
a∑

ℓ=0

(n+ ℓ)!rℓ + (−1)a+1B̃(a+ 1)

n∑

k=1

k!
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where

(1.10) rℓ =
a∑

i=ℓ+1

(−1)iS(a+ 1, i),

shows that Wilf’s conjecture, in the positive, implies that the identity

(1.11)
n∑

k=1

kk! = (n+ 1)!− 1

is unique in this category. M. Petkovsek, H. S. Wilf and D. Zeilberger [11] is the
standard reference for issues involving closed-form summation. The details for (1.9)
are provided in [6].

Section 2 presents a family of polynomials that play a crucial role in the study
of the 2-adic valuations of Bell numbers given in Section 3. The main arguments in
the work presented here are based on the representation of the polynomials intro-
duced in Section 2 in terms of ascending and descending factorials. This is discussed
in Section 4. An alternative proof of the analytic expressions for the valuations of
regular Bell numbers is presented in Section 5. This serves as a motivating example
for the more difficult case of the 2-adic valuations of complementary Bell numbers.
Experimental data on these valuations are presented in Section 6. The data sug-
gests that only those indices congruent to 2 modulo 3 need to be considered. The
study of this case begins in Section 7 where these valuations are determined for all
but two classes modulo 24. The two remaining classes require the introduction of
an infinite matrix. This is done in Section 8. The two remaining classes are ana-
lyzed in Sections 9 and 10, respectively. The final section presents the exponential
generating functions of the two classes of polynomials employed in this work, and
some open problems.

2. An auxiliary family of polynomials

The recurrence for the Stirling numbers of second kind

(2.1) S(n+ 1, k) = S(n, k − 1) + kS(n, k)

is summed over 0 ≤ k ≤ n+ 1 to produce

(2.2)

n+1∑

k=0

S(n+ 1, k) =

n∑

k=0

(k + 1)S(n, k)

using the vanishing of S(n, k) for k < 0 or k > n. Iteration of this procedure leads
to the next result.

Lemma 2.1. The family of polynomials µj(k), defined by

µj+1(k) = kµj(k) + µj(k + 1),(2.3)

µ0(k) = 1,(2.4)

satisfy

(2.5) B(n+ j) =

n+j∑

k=0

S(n+ j, k) =

n∑

k=0

µj(k)S(n, k),

for all n, j ≥ 0.
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Proof. The proof is by induction on j. The inductive step gives

(2.6)

(n+1)+j∑

k=0

S((n+ 1) + j, k) =

n+1∑

k=0

µj(k)S(n+ 1, k).

The recurrence (2.1) and (2.3) yield the result. �

Note. The polynomials µj(k) have positive integer coefficients and the first few
are given by

µ0(k) = 1

µ1(k) = k + 1

µ2(k) = k2 + 2k + 2

µ3(k) = k3 + 3k2 + 6k + 5.

The degree of µj is j so the family Zm := {µj : 0 ≤ j ≤ m} forms a basis for the
space of polynomials of degree at most m.

The special polynomial

µ12(k) = k12 + 12k11 + 132k10 + 1100k9 + 7425k8 + 41184k7(2.7)

+187572k6 + 694584k5 + 2049300k4 + 4652340k3

+7654350k2 + 8142840k + 4213597

plays a crucial role in the study of 2-adic valuation of Bell numbers discussed in
Section 3.

3. The 2-adic valuation of Bell numbers

In this section we determine the 2-adic valuation of the Bell numbers. The data
presented in Figure 1 suggests to examining this valuation along classes modulo 12.

10 20 30 40 50 60

0.5

1.0

1.5

2.0

Figure 1. The 2-adic valuation of Bell numbers

Theorem 3.1. The 2-adic valuation of the Bell numbers satisfy

(3.1) ν2(B(n)) = 0 if n ≡ 0, 1 mod 3.

In the missing case, n ≡ 2 mod 3, the sequence ν2(B(3n+2)) is a periodic function

of period 4. The repeating values are {1, 2, 2, 1}. In particular, the 2-adic valuation
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of the Bell numbers is completely determined modulo 12. In detail,

ν2(B(12n+ j)) =





0 if j ≡ 0, 1 3, 4, 6, 7, 9, 10 mod 12

1 if j ≡ 2, 11 mod 12

2 if j ≡ 5, 8 mod 12.

(3.2)

The proof of the theorem starts with a congruence for the Bell numbers.

Lemma 3.2. The Bell numbers satisfy

(3.3) B(n+ 24) ≡ B(n) mod 8.

Proof. The identity (2.5) gives

(3.4)

n+12∑

k=0

S(n+ 12, k) =

n∑

k=0

µ12(k)S(n, k).

The polynomial µ12(k) given in (2.7) is now expressed in terms of the basis of
ascending factorials

(3.5) (k)[m] := k(k + 1)(k + 2) · · · (k +m− 1), m ∈ N, with (k)[0] = 1.

A direct calculation shows that

(3.6) µ12(k) ≡

12∑

m=0

am(k)[m]

with a0 = 421359 ≡ 5, a1 = 3633280 ≡ 0, a2 = 1563508 ≡ 4, and a3 = 414920 ≡
0 mod 8. Also, for m ≥ 4, we have (k)m ≡ 0 mod 8. Thus

(3.7) µ12(k) ≡ 5 + 4k(k + 1) ≡ 5 mod 8.

Now (3.4) produces

(3.8)

n+12∑

k=0

S(n+ 12, k) ≡ 5

n∑

k=0

S(n, k) mod 8,

that is, B(n+12) ≡ 5B(n) mod 8. Repeating this yields B(n+24) ≡ 5B(n+12) ≡
25B(n) ≡ B(n) mod 8. �

The result of the theorem now follows computating of the first 24 Bell numbers
modulo 8 to obtain the pattern asserted in the theorem.

Remark 3.3. The p-adic valuation of Bell numbers for primes p 6= 2 exhibit some
patterns. Figure 2 shows the case p = 3.

Experimental observations show that, if j 6≡ 2 mod 3, then

(3.9) ν3(B12(n+j)+j) = ν3(B12n), for n ≥ 0.

In other words, up to a shift, the valuations ν3(B12n+j) are independent of j.
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Figure 2. The 3-adic valuation of Bell numbers

4. A representation in two basis

The set

(4.1) Zm = {µj(k) : 0 ≤ j ≤ m}

is a basis of the vector space of polynomials of degree at most m. This section
explores the representation of this basis in terms of the usual ascending factorials,
defined by

(k)[r] := k(k + 1)(k + 2) · · · (k + r − 1) for r > 0,(4.2)

(k)[0] := 1,

and the descending factorials, given by

(k)r := k(k − 1)(k − 2) · · · (k − r + 1) for r > 0,(4.3)

(k)0 := 1,

Definition 4.1. The coefficients of µn(r) with respect to these bases are denoted

(4.4) µj(k) =

j∑

r=0

aj(r)(k)
[r] and µj(k) =

j∑

r=0

dj(r)(k)r.

These coefficients are stored in the vectors

(4.5) aj := [aj(0), aj(1), · · · ] and dj := [dj(0), dj(1), · · · ]

where aj(r) = dj(r) = 0 for r > j.

Certain properties of (k)r and (k)[r] required in the analysis of the 2-adic valu-
ations are stated below.

Lemma 4.2. The ascending factorial symbol satisfies

(k − 1)[r] = (k)[r] − r(k)[r−1]

k(k)[r] = (k)[r+1] − r(k)[r].

The corresponding relations for the descending factorials are

(k + 1)r = (k)r + r(k)r−1

k(k)r = (k)r+1 + r(k)r.

The next step is to transform the recurrence for µj in (2.3) into recurrences for
the coefficients aj(r) and dj(r).
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Proposition 4.3. The coefficients aj(r) in Definition 4.1 satisfy

(4.6) aj+1(r)− (r + 1)aj+1(r + 1) = aj(r − 1)− 2raj(r) + (r + 1)2aj(r + 1),

with the assumptions that aj(r) = 0 if r < 0 or r > j.

Proof. This follows directly from the recurrence for µj and the properties described
in Lemma 4.2. �

Note. The recurrences for the coefficients aj can be written using the (infinite)
matrices

(4.7) M = (mij)i, j≥0 and N = (nij)i, j≥0

with

mij =





1 if i = j

−(i+ 1) if i = j − 1

0 otherwise

and nij =





1 if i = j + 1

−2(i− 1) if i = j

i2 if i = j − 1

0 otherwise

in the form

(4.8) Maj+1 = Naj.

The analogue of Proposition (4.3) for descending factorials is stated next.

Proposition 4.4. The coefficients dj(r) in (4.1) satisfy

(4.9) dj+1(r) = dj(r − 1) + (r + 1)dj(r) + (r + 1)dj(r + 1),

with the assumptions that dj(r) = 0 if r < 0 or r > j.

Note. The recurrence for dj is now written using T = (tij)i, j≥0, where

tij =





i+ 1 if i = j

i if i = j − 1

1 if i = j + 1

0 otherwise

in the form

(4.10) dj+1 = Tdj.

5. An alternative approach to valuation of Bell numbers

This section presents an alternative proof of the congruence (3.2) based on the
results of Section 4. Recall that this congruence provides a complete structure
of the 2-adic valuation of the Bell numbers. The ideas introduced here provide a
partial description of the 2-adic valuations of complementary Bell numbers.

The first step is to identify the Bell numbers as the first entry of the vectors aj
and dj .

Lemma 5.1. The Bell numbers are given by

(5.1) B(j) = µj(0) = aj(0) = dj(0).

Proof. Let n = 0 in the identity (2.5) to obtain B(j) = µj(0). The other two
expressions for the Bell numbers B(j) are obtained by letting k = 0 in (4.4). �
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The congruence for the Bell numbers now arises from the analysis of the relations
(4.8) and (4.10) modulo 8. The key statement is provided next.

Lemma 5.2. If k ∈ N and r ≥ 4, then

(5.2) (k)[r] ≡ (k)r ≡ 0 mod 8.

Proof. Among any set of four consecutive integers there is one that is a multiple of
2 and a different one that is a multiple of 4. �

The system (4.8) now reduces to




1 −1 0 0
0 1 −2 0
0 0 1 −3
0 0 0 1







aj+1(0)
aj+1(1)
aj+1(2)
aj+1(3)


 =




0 1 0 0
1 −2 4 0
0 1 −4 9
0 0 1 −6







aj(0)
aj(1)
aj(2)
aj(3)


 .

Inverting the matrix on the left and taking entries modulo 8 leads to

(5.3) a
(4)
j+1 ≡ X4a

(4)
j mod 8

where a
(4)
j represents the first four entries of the coefficient vector aj and

X4 =




1 1 2 6
1 0 2 6
0 1 7 7
0 0 1 2


 .

Now observe that

(5.4) a
(4)
j+2 ≡ X4a

(4)
j+1 ≡ X2

4a
(4)
j mod 8

and this extends to

(5.5) a
(4)
j+s ≡ Xs

4a
(4)
j mod 8

for any s ∈ N.

Lemma 5.3. The matrix X satisfies X24 ≡ I mod 8.

Proof. Direct (symbolic) calculation. �

The Bell number B(j) is the first entry of the vector a
(4)
j . Then considering the

first entry in the relation

(5.6) a
(4)
j+24 ≡ X24

4 a
(4)
j mod 8

gives the congruence B(j + 24) ≡ B(j) mod 8.

Note. The corresponding relation for the coefficient vector dj is simpler: the
system (4.10) reduces to

(5.7)




dj+1(0)
dj+1(1)
dj+1(2)
dj+1(3)


 ≡ T4 ×




dj(0)
dj(1)
dj(2)
dj(3)


 mod 8
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where

(5.8) T4 =




1 1 0 0
1 2 2 0
0 1 3 3
0 0 1 4


 .

The matrix T4 also satisfies T 24
4 ≡ I mod 8 and the argument proceeds as before.

6. Some experimental data on ν2(B̃(n))

This section discusses the 2-adic valuations of the complementary Bell numbers

B̃(n). The data is depicted in Figure 3 in the range 3 ≤ n ≤ 1000.

100 200 300 400 500

2

4

6

8

10

Figure 3. The 2-adic valuation of the complementary Bell numbers

This discussion begins with some empirical data from the sequence ν2(B̃(n)).
For 3 ≤ n ≤ 30, the list is

(6.1) {0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 5, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 5, 0, 0, 1, 0}.

This suggests that ν2(B̃(n)) = 0 if n 6≡ 2 mod 3. The list of values of ν2(B̃(3n+2))
is

{1, 1, 2, 5, 1, 1, 2, 5, 1, 1, 2, 7, 1, 1, 2, 6, 1, 1, 2, 5, 1, 1, 2, 5, 1, 1, 2, 6, 1, 1}

and the patterns {1, 1, 2, ∗} suggest to consider the sequence ν2(B̃(n)) for nmodulo
12. The values n ≡ 2 mod 3 split into classes 2, 5, 8 and 11 modulo 12. The data
suggests

ν2(B̃(12n+ 5)) = 1, ν2(B̃(12n+ 8)) = 1, ν2(B̃(12n+ 11)) = 2,

while the class n ≡ 2 mod 12 does not exhibit such a pattern.

The first step in the analysis of 2-adic valuations of B̃(n) is to present some

elementary congruences to establish that both B̃(3n) and B̃(3n+1) are always odd
integers. The proof relies on the recurrence

(6.2) B̃(n) = −

n−1∑

k=0

(
n− 1

k

)
B̃(k), for n ≥ 1 and B̃(0) = 1.

Proposition 6.1. The complementary Bell numbers B̃(n) satisfy

(6.3) B̃(3n) ≡ B̃(3n+ 1) ≡ 1, and B̃(3n+ 2) ≡ 0 mod 2.
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Proof. Proceed by induction. The recurrence (6.2) yields

(6.4) −B̃(3n) =

3n−1∑

k=0

(
3n− 1

k

)
B̃(k).

Splitting the sum as

−B̃(3n) =

n−1∑

k=0

(
3n− 1

3k

)
B̃(3k)+

n−1∑

k=0

(
3n− 1

3k + 1

)
B̃(3k+1)+

n−1∑

k=0

(
3n− 1

3k + 2

)
B̃(3k+2)

and using the inductive hypothesis gives

(6.5) −B̃(3n) ≡

n−1∑

k=0

(
3n− 1

3k

)
+

n−1∑

k=0

(
3n− 1

3k + 1

)
mod 2.

The two sums appearing in the previous line add up to

(6.6) 23n−1 −

n−1∑

k=0

(
3n− 1

3k + 2

)
.

The result now follows from the identity

(6.7)
n−1∑

k=0

(
3n− 1

3k + 2

)
=

23n−1 + (−1)n

3
.

Both sides satisfies the recurrence xn+2−7xn+1−8xn = 0 and have the same initial
conditions x1 = 1 and x2 = 11. �

50 100 150 200 250 300
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Figure 4. The 2-adic valuation of B̃(3n+ 2)

Proposition 6.1 shows that

(6.8) ν2(B̃(3n)) = ν2(B̃(3n+ 1)) = 0,

leaving the case ν2(B̃(3n+2)) for discussion. This is presented in Section 7. Figure
4 shows the data for this sequence and its erratic behavior can be seen from the
graph.
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7. The 2-adic valuation of B̃(3n+ 2)

The results from the previous section show that B̃(3n) and B̃(3n + 1) are odd

integers and B̃(3n + 2) is an even integer. This section explores the value of the

sequence ν2(B̃(3n+ 2)). The family of polynomials {λj(k) : j ≥ 0} play the same
role as µj(k) did for the regular Bell numbers B(n).

Lemma 7.1. The family of polynomials λj(k), defined by

λj+1(k) = kλj(k)− λj(k + 1),(7.1)

λ0(k) = 1,

satisfy

(7.2) B̃(n+ j) =

n+j∑

k=0

(−1)kS(n+ j, k) =

n∑

k=0

(−1)kλj(k)S(n, k),

for all n, j ≥ 0.

Proof. Use the recurrence (7.1) and proceed as in the proof of Lemma 2.1. �

Corollary 7.2. The evaluation B̃(j) = λj(0) is valid for j ∈ N.

The recursions for the descending factorials, given in Proposition 4.2 yield an

evaluation of B̃(n) in terms of the powers of an infinite matrix.

Note. The (i, j)-entry of a matrix A is denoted by A(i, j). This notation is used
to prevent confusion with the presence of a variety of subindices.

Theorem 7.3. Let P = P (r, s), r, s ≥ 0 be the infinite matrix defined by

(7.3) P (r+1, r) = 1, P (r, r) = r−1, P (r, r+1) = −r−1, P (r, s) = 0 for |r−s| > 1

or

(7.4) P =




−1 −1 0 0 0 0 · · ·
1 0 −2 0 0 0 · · ·
0 1 1 −3 0 0 · · ·
0 0 1 2 −4 0 · · ·
0 0 0 1 3 −5 · · ·
0 0 0 0 1 4 · · ·
...

...
...

...
...

...
. . .




.

Then

(7.5) B̃(n) = Pn(0, 0).

Proof. The first step is to express the polynomials λn(x) in terms of the falling
factorial:

(7.6) λn(k) =
n∑

r=0

cn(r)(k)r.

The recurrence relation in Lemma 7.1 shows that cn(r) are integers with c0(0) = 1,
c0(r) = 0 for r > 0 and cn(r) = 0 if r > n. Moreover, this recurrence may be
expressed as

(7.7) cn+1 = Pcn,
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with P defined in (7.4) and cn is the vector (cn(r) : r ≥ 0).
Note that powers of P can be computed with a finite number of operations: each

row or column has only finitely many non-zero entries. Iterating (7.7) gives

(7.8) cn(r) = Pn(r, 0), r ≥ 0.

The result now follows from Corollary 7.2 and cn(0) = λn(0). �

The next lemma contains a precise description of the fact that the descending
factorial (k)r is divisible by a large power of 2. This is a fundamental tool in the

analysis of the 2-adic valuation of B̃(n).

Lemma 7.4. For each m ≥ 0 and k ≥ 1, the congruence

(7.9) (k)r ≡ 0 mod 22
m−1 holds for all r ≥ 2m.

Proof. Since (k)j divides (k)j for j ≥ r, it may be assumed that r = 2m. Now

observe that (k)r/r! =
(
k
r

)
, thus ν2((k)r) ≥ ν2(r!). For r = 2m, Legendre’s formula

(1.5) gives the value ν2(r!) = 2m − s2(2
m) = 2m − 1. �

Now we exploit the previous lemma to derive congruences for B̃(n) modulo a
large power of 2. The first step is to show a result analogous to Theorem 7.3, with
P replaced by a 2m×2m matrix, provided the computations are conducted modulo
22

m−1. Proposition 7.5 is not necessary for the results that follow it, but it is of

interest because it allows us to express B̃(n) as the top left entry of the power of a
finite matrix (with size depending on n).

Proposition 7.5. Let P [n] be the n× n matrix defined by

(7.10) P [n](r, s) = P (r, s), 0 ≤ r, s ≤ n− 1.

For each n ≥ 1 and i ≥ 1,

(P [n])
i
(r, s) = P i(r, s) for 0 ≤ r, s ≤ n− 1, r + s+ i ≤ 2n− 1.

Proof. Fix n ≥ 1 and proceed by induction on i. The statement is clearly true for
i = 1. Assume that r + s+ i+ 1 ≤ 2n− 1, then the claim follows by computing

(7.11) (P [n])
i+1

(r, s) =
n−1∑

t=0

(P [n])
i
(r, t)P [n](t, s).

�

Corollary 7.6. For i ≤ 2n− 1, the complementary Bell number is given by

(7.12) B̃(i) = (P [n])
i
.

For m ≥ 1 fixed, denote P [2m] by Pm. This is a matrix of size 2m× 2m, indexed
by {0, 1, . . . , 2m − 1}. Lemma 7.4 gives

(7.13) λn(k) ≡
2m−1∑

r=0

cn(r)(k)r mod 22
m−1, n ≥ 1, k ≥ 0,

and then the same argument as before gives

(7.14) cn(r) ≡ Pn
m(r, 0) mod 22

m−1, for 0 ≤ r ≤ 2m − 1, n ≥ 1.

The next proposition summarizes the discussion.
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Proposition 7.7. For n ∈ N,

(7.15) B̃(n) ≡ Pn
m(0, 0) mod 22

m−1.

Corollary 7.8. The complementary Bell numbers satisfy

(7.16) B̃(n+ j) ≡

2m−1∑

r=0

P j
m(0, r)Pn

m(r, 0) mod 22
m−1, n ≥ 1, j ≥ 0.

Proof. This is simply the identity Pn+j
m = Pn

m × P j
m. �

Proposition 7.9. The following table gives the values of B̃(24n+ j) modulo 8 for

0 ≤ j ≤ 23:

j B̃(24n+ j) mod 8
0 1
1 7
2 0
3 1
4 1
5 6
6 7
7 7
8 2
9 3
10 5
11 4

j B̃(24n+ j) mod 8
12 5
13 3
14 0
15 5
16 5
17 6
18 3
19 3
20 2
21 7
22 1
23 4

Proof. Choose m = 2, and check that P 24
2 ≡ I mod 8. Corollary 7.8 gives

(7.17) B̃(24n+ j) ≡

3∑

r=0

P j
2 (0, r)P

24n
2 (r, 0) ≡ P j

2 (0, 0) ≡ B̃(j) mod 8.

Therefore the value of B̃(j) modulo 8 is a periodic function with period 24. The

result follows by computing the values B̃(j) for 0 ≤ j ≤ 23. �

Corollary 7.10. Assume j 6≡ 2, 14 mod 24. Then

(7.18) ν2(B̃(j)) =





1 if j ≡ 5, 8, 17, 20 mod 24

2 if j ≡ 11, 23 mod 24

0 otherwise.

Corollary 7.11. Assume j 6≡ 2, 14 mod 24. Then B̃(j) 6= 0.

The remaining sections discuss the more difficult cases n ≡ 2 and n ≡ 14 mod 24.
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8. The top-left block of powers of the matrix Pm

The analysis of the 2-adic valuation of B̃(n) employs the sequence of matrices
appearing in the top-left block of powers of the matrix Pm. This section describes
properties of this sequence.

A convention on their block structure is presented next:

let n ∈ N and i, j integers with 1 ≤ i, j ≤ n − 1. For an n × n matrix Q and an
i× j matrix A, the block structure is

(8.1) Q =

(
A B
C D

)
.

Since the size of the top left corner determines the rest, the notation

Q =




i×j︷︸︸︷
A B
C D




will be used to specify the size of all blocks when necessary. The default convention

is that whenever a 2m × 2m matrix is written in block form

(
A B
C D

)
, it will be

understood that the blocks are of size 2m−1 × 2m−1.

The next lemma is the essential part of the argument for the 2-adic analysis of

B̃(n). The proof is a simple check with the definitions.

Definition 8.1. For each m ≥ 0, define 2m×2m matrices Bm, Dm, Vm inductively
as follows: B0 = −1, D0 = 1, V0 = 1,

Bm+1 =

(
0 0

Bm 0

)
, Dm+1 =

(
Dm Bm

0 Dm

)
, Vm+1 =

(
0 Vm

0 0

)
,

where all blocks are 2m × 2m matrices.

Recall the Pm is the 2m × 2m matrix obtained from the top left corner of the
infinite matrix P defined in (7.4).

Lemma 8.2. The matrices Pm satisfy the recurrence

Pm+1 =

(
Pm 0
Vm Pm

)
+ 2m

(
0 Bm

0 Dm

)
.

The first point in the analysis is to show that, for every power of Pm, the top
half of the last column is zero modulo a large power of 2.

Lemma 8.3. For all m ≥ 1, n ≥ 1, and 0 ≤ i ≤ 2m − 1, the inequality

(8.2) ν2 (P
n
m(i, 2m − 1)) ≥ 2m −m− 1− ν2(i!).

holds.

Proof. The right-hand side vanishes form = 1. Fixm ≥ 2. If n = 1, the last column
of Pm has 2m − 2 zeros at the beginning and its last two entries are −(2m − 1) and
2m − 2. Therefore, ν2 (Pm(i, 2m − 1)) = ∞ for 0 ≤ i ≤ 2m − 3, and

ν2 (Pm(2m − 2, 2m − 1)) = ν2(−(2m − 1)) = 0,

ν2 (Pm(2m − 1, 2m − 1)) = ν2(2
m − 2) = 1.
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Legendre’s formula (1.5) shows that the right-hand side of (8.2) is 2m−m−1− i+
s2(i), so it vanishes for i = 2m − 2 and i = 2m − 1. This proves the case for n = 1.

The inductive step is presented next:

Pn+1
m (i, 2m − 1) =

2m−1∑

j=0

Pm(i, j)Pn
m(j, 2m − 1)

= Pm(i, i− 1)Pn
m(i− 1, 2m − 1) + Pm(i, i)Pn

m(i, 2m − 1)

+Pm(i, i+ 1)Pn
m(i+ 1, 2m − 1)

= Pn
m(i− 1, 2m − 1) + (i− 1)Pn

m(i, 2m − 1)− (i+ 1)Pn
m(i+ 1, 2m − 1).

Observe that the three terms on the last line are elements of the last column of the
matrix Pn

m. The inductive argument provides a lower bound on the power of 2 that
divides these integers. Therefore, there are integers q1, q2, q3 such that

Pn+1
m (i, 2m−1) = 22

m−m−1
(
2−ν2((i−1)!)q1 + 2ν2(i−1)−ν2(i!)q2 − 2ν2(i+1)−ν2((i+1)!)q3

)
.

It follows that

(8.3) ν2
(
Pn+1
m (i, 2m − 1)

)
≥

2m −m− 1 + min{−ν2((i− 1)!), ν2(i− 1)− ν2(i!), ν2(i+ 1)− ν2((i+ 1)!)}.

Now use ν2(i+1)− ν2((i+1)!) = −ν2(i!) and −ν((i− 1)!) ≥ −ν2(i!), to verify that
the minimum on the right is −ν2(i!). This completes the argument. �

The next step is to describe the relation of the matrix Pm (of size 2m × 2m)
to Pm+1 (of size 2m+1 × 2m+1). The additional block matrices appearing in this
transition are defined recursively:

Fix m ≥ 0, define 2m × 2m matrices Vm,n, Am,n, Bm,n, Cm,n, Dm,n inductively
by

Vm,1 = Vm, Vm,n+1 = Vm,nPm + Pm
m Vm,n

Bm,1 = Bm, Bm,n+1 = Pn
mBm +Bm,nPm

Am,1 = 0, Am,n+1 = Am,nPm +Bm,nVm

Dm,1 = Dm, Dm,n+1 = Vm,nBm + Pn
mDm +Dm,nPm

Cm,1 = 0, Cm,n+1 = Cm,nPm +Dm,nVm

The relation bewteen Pm and Pm+1 is stated next.

Lemma 8.4. For each n ≥ 1, the congruence

(8.4) Pn
m+1 ≡

(
Pn
m 0

Vm,n Pn
m

)
+ 2m

(
Am,n Bm,n

Cm,n Dm,n

)
mod 22m

holds.
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Proof. The result is clear for n = 1. Computing Pn+1
m+1 = Pn

m+1Pm+1, it follows
that

Pn+1
m+1 ≡

(
Pn
m + 2mAm,n 2mBm,n

Vm,n + 2mCm,n Pn
m + 2mDm,n

)(
Pn
m 2mBm

Vm,n Pn
m + 2mDm

)

≡

(
Pn+1
m 0

Vm,nPm + Pn
mVm Pn+1

m

)

+ 2m
(

Am,nPm +Bm,nVm Pn
mBm +Bm,nPm

Cm,nPm +Dm,nVm Vm,nBm + Pn
mDm +Dm,nPm

)
mod 22m.

The recurrence for the matrices A, B, C, D and V are designed to complete the
inductive step. �

Corollary 8.5.

(8.5) Vm,2n ≡ Vm,nP
n
m + Pn

mVm,n mod 22m

Proof. This follows from Lemma 8.4 by computing P 2n
m+1 = Pn

m+1P
n
m+1. �

The next lemma shows some operational rules for the matrices A, B introduced
above. The symbol ∗ indicates an unspecified integer or matrix.

Lemma 8.6. (a) For any 2m×2m matrix M(i, j) and arbitrary i ∈ N, we have

(MBm)(i, 0) = −M(i, 2m − 1).

(b) For m ≥ 2 and n ≥ 1, both Bm,n and Am,n have the form
(

0 0
∗ ∗

)
mod 22

m−1−1

Proof. Part (a) follows directly from the definition of Bm. Part (b) is established
by induction. The statement holds for Bm,1. Now observe that

(Pn
mBm)(i, 0) = −Pn

m(i, 2m − 1) ≡ 0 mod 22
m−1−1 for 0 ≤ i ≤ 2m−1 − 1,

by part (a) and Lemma 8.3. The induction hypothesis implies that

Bm,n ≡

(
0 0
∗ ∗

)
mod 22

m−1−1,

and this leads to

Bm,n+1 = Pn
mBm +Bm,nPm ≡

(
0 0
∗ ∗

)
mod 22

m−1−1.

A similar argument shows that

Am,n+1 = Am,nPm +Bm,nVm ≡

(
0 0
∗ ∗

)
mod 22

m−1−1.

�

The next results describe the powers of Pm considered modulo 2i. This leads to

explicit formula for the 2-adic valuation of B̃(n).

Notation: dm = 3× 2m.

Proposition 8.7. For all m ≥ 1,

P dm

m ≡ I mod 4, and Vm,dm
≡ 0 mod 2.
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Proof. For m = 1, a direct calculation shows that P 3
1 = I and so P d1

1 = P 6
1 = I.

Also,

V1,2 ≡ V1P1 + P1V1 ≡

(
1 1
0 1

)
mod 2,

V1,3 ≡ V1,2P1 + P 2
1 V1 ≡

(
0 1
1 1

)
mod 2,

and this produces

V1,d1
= V1,6 ≡ V1,3P

3
1 + P 3

1 V1,3 ≡

(
0 0
0 0

)
mod 2.

Assume now P dm

m ≡ I mod 4 and Vm,dm
≡ 0 mod 2. For simplicity, drop the

subscripts in the matrices. Lemma 8.4 gives

P dm

m+1 ≡

(
P 0
V P

)
≡

(
I 0
V I

)
mod 4

and

P
dm+1

m+1 =
(
P dm

m+1

)2

≡

(
I 0
V I

)(
I 0
V I

)
≡

(
I 0
2V I

)
≡

(
I 0
0 I

)
mod 4.

Using the notation

Vm+1,dm
=

(
X Y
Z W

)

it follows that

Vm+1,dm+1
= Vm+1,2dm

≡ Vm+1,dm
P dm

m+1 + P dm

m+1Vm+1,dm

≡

(
X Y
Z W

)(
P 0
V P

)
+

(
P 0
V P

)(
X Y
Z W

)

≡

(
X Y
Z W

)(
I 0
V I

)
+

(
I 0
V I

)(
X Y
Z W

)

≡

(
X + Y V Y
Z +WV W

)
+

(
X Y

V X + Z V Y +W

)

≡

(
2X + Y V 2Y

2Z +WV + V X V Y + 2W

)
≡

(
0 0
0 0

)
mod 2.

�

The next proposition provides the structure of P dm

m module 2m+3, for m ≥ 4.
Introduce the notation

Q =




1 2 6 0
6 1 0 6
3 4 5 4
0 1 4 3




and define recursively for m ≥ 4 the 4× (2m − 4) matrices Rm by

R4 =




1 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0


 ,

Rm+1 =
(
Rm 0

)
.
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Notation: q(∗) indicates a matrix or number that is a multiple of q.

Proposition 8.8. Let m ≥ 4. Then

4 × 4︷︸︸︷

P dm

m ≡ I +

(
2mQ 2m+2Rm

4(∗) 4(∗)

)
mod 2m+3.

Proof. The claim holds for m = 4 by simple task: evaluate P 48
4 modulo 27. Keep

in mind that P4 is a 16× 16 matrix.
Assume the claim holds for m. Observe that 2m ≥ m+4 for m ≥ 4, therefore the

congruence module 22m of Lemma 8.4 can be replaced with a congruence module

2m+4. Write V =

(
X Y
Z W

)
to obtain

P dm

m+1 ≡

(
P 0
V P

)
+ 2m

(
A B
C D

)

≡




I + 2mQ 2m+2R 0 0
4(∗) I + 4(∗) 2m(∗) 2m(∗)

X + 2m(∗) Y + 2m(∗) I + 2m(∗) 2m(∗)
Z + 2m(∗) W + 2m(∗) 4(∗) I + 4(∗)


 mod 2m+4.

Squaring this matrix gives

P
dm+1

m+1 ≡




I + 2m+1Q 2m+3R 0 0
4(∗) I + 4(∗) 4(∗) 4(∗)

2X + 4(∗) 2Y + 4(∗) I + 4(∗) 4(∗)
2Z + 4(∗) 2W + 4(∗) 4(∗) I + 4(∗)


 mod 2m+4.

The previous proposition shows that V =

(
X Y
Z W

)
≡ 0 mod 2, therefore

P
dm+1

m+1 ≡ I +

(
2m+1Q 2m+3Rm+1

4(∗) 4(∗)

)
mod 2m+4.

This completes the induction argument. �

The next corollary is employed in the next section to establish the 2-adic valua-
tion of complementary Bell numbers.

Corollary 8.9. For each n ≥ 1,

4 × 4︷︸︸︷

Pndm

m ≡ I + n

(
2mQ 2m+2Rm

4(∗) 4(∗)

)
mod 2m+3.

Proof. The result follows immediately from Proposition 8.8 and the binomial the-
orem. �

9. The case n ≡ 2 mod 24

The 2-adic valuations for the complementary Bell numbers B̃(n) are given in
Corollary 7.10 for j 6≡ 2, 14 mod 24. This section determines the case j ≡ 2.

The main result is :
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Theorem 9.1. For n ∈ N,

ν2

(
B̃(24n+ 2)

)
= 5 + ν2(n).

Proof. Write n = 2mq with q odd. Corollary 7.8 and Proposition 8.8 give

B̃(24n+ 2) = B̃(3 · 2m+3q + 2) ≡

2m+3−1∑

r=0

P
qdm+3

m+3 (0, r)P 2
m+3(r, 0)

≡ P
qdm+3

m+3 (0, 0)P 2
m+3(0, 0) + P

qdm+3

m+3 (0, 1)P 2
m+3(1, 0)

+P
qdm+3

m+3 (0, 2)P 2
m+3(2, 0)

≡ (1 + 2m+3q)(0)− q2m+4 + 6q2m+3

≡ q2m+5 ≡ 2m+5 mod 2m+6.

The expression for the valuation ν2

(
B̃(24n+ 2)

)
follows immediately. �

 mod3

 3
mod3 2⋅

 4
mod3 2⋅

 5
mod3 2⋅

 2
mod3 2⋅

 mod3 2⋅

 6
mod3 2⋅

 7
mod3 2⋅

 8
mod3 2⋅

 0
 0

 1  2 1

 5

 6

 7

 8

 9

0 1 2

52

2 8 5 11

2 14

2

2

2

2

26

74

170

362

746

 n

Figure 5. The 2-adic valuation of B̃(24n+ 2)

The tree shown in Figure 5 summarizes the information derived so far on the

2-adic valuation of B̃(n). The top three edges of the tree correspond to the residue
class of n (mod 3). The number by the side of the edge (if present) gives the

(constant) 2-adic valuation of B̃(n) for that residue class. For example ν2(B̃(3n+
1)) = 0. If there is no number next to the edge, the 2-adic valuation is not constant
for that residue class, so n needs to be split further. The split at each stage is
conducted by replacing the index n of the sequence by 2n and 2n+1. For example,

the sequence ν2(B̃(12n+ 2)) is not constant so it generates the two new sequences

ν2(B̃(24n+2)) and ν2(B̃(24n+14)). Constant sequences include ν2(B̃(12n+8)) =
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ν2(B̃(12n + 5)) = 1 and ν2(B̃(12n + 11)) = 2. The main theorem of this section
shows that the infinite branch on the left, coming from the splitting of 24n+2, has
a well-determined structure. The other infinite branch, corresponding to 24n+ 14,
does not exhibit such regular pattern. This is the topic of the next section.

10. The case n ≡ 14 (mod 24)

This section discusses the last missing case in the 2-adic valuations of B̃(n). The
main result of this section is:

Theorem 10.1. There is at most one integer n > 2 such that B̃(n) = 0.

Outline of the proof. The proof consists of a sequence of steps.

Step 1. Define recursively two sequences {xm, ym} via

ym+1 =





ym if ν2(B̃(xm)) > m+ 5

ym + 2m if ν2(B̃(xm)) ≤ m+ 5

xm+1 = 24ym+1 + 14.

Step 2. Let ym =
m∑

i=0

sm,i2
i and let si = lim

m→∞
sm,i and define s = (s0, s1, s2, · · · ).

Step 3. For n ∈ N let n =
∑

k

bk(n)2
k be its binary expansion. Let

(10.1) ω(n) =

{
first index k such that bk(n) 6= sk

∞ otherwise

Then ω(n) < ∞ unless s has ony finitely many ones and s is the binary expansion
of n. If such n exists, it is called exceptional.

Step 4. The 2-adic valuation of B̃(24n+ 14) is given by

(10.2) ν2(B̃(24n+ 14)) = ω(n) + 5.

In particular B̃(n) = 0 only if n is exceptional. This concludes the proof of the
theorem.

Proof of Theorem 10.1.

The r-th entry of the top row of P j
m needs to be expressed as a linear combination

of B̃(j + i) (mod 22
m−1), 0 ≤ i ≤ r. This is the content of the next lemma.

Lemma 10.2. Define br(i) recursively by

b0(0) = 1,

br+1(i) = br(i− 1) + (1− r)br(i) + rbr−1(i), 0 ≤ i ≤ r

br(i) = 0 for i < 0 or i > r.

Then for each m ≥ 1, j ≥ 1, and 0 ≤ r ≤ 2m − 1, we have

P j
m(0, r) ≡

r∑

i=0

br(i)B̃(j + i) (mod 22
m−1).
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Proof. The proof is by induction on r. If r = 0, the statement is Proposition 7.7.
Assuming the statement for r, it follows that

P j+1
m (0, r) ≡

r∑

i=0

br(i)B̃(j + 1 + i) mod 22
m−1

and also

P j+1
m (0, r) = P j

m(0, r − 1)Pm(r − 1, r) + P j
m(0, r)Pm(r, r)

+ P j
m(0, r + 1)Pm(r + 1, r)

= −rP j
m(0, r − 1) + (r − 1)P j

m(0, r) + P j
m(0, r + 1).

Comparing the two expressions and using induction, P j
m(0, r+ 1) is expressed as a

linear combination of B̃(j + i), 0 ≤ i ≤ r, with coefficients as in the right side of
the equation defining br+1(i). �

Extensive calculations suggest that ν2(B̃(24n+ 14)) is always at least 5, and it
is rather irregular. After examining the experimental data, we were led to define
the following sequences.

Define xm, ym inductively by:

y0 = 0, x0 = 24y0 + 14,

and if xm, ym have been defined, set

ym+1 =





ym if ν2

(
B̃(xm)

)
> m+ 5

2m + ym if ν2

(
B̃(xm)

)
≤ m+ 5

, xm+1 = 24ym+1 + 14.

This is the statement of Step 1.

The next table gives the first few values of ym and xm.

m 0 1 2 3 4 5 6 7 8 9 10
ym 0 1 1 5 13 13 13 77 77 333 845
xm 14 38 38 134 326 326 326 1862 1862 8006 20294

The next lemma provides a lower bound for the 2-adic valuation of the subse-
quence of complementary Bell numbers indexed by xm.

Lemma 10.3. For m ∈ N, ν2(B̃(xm)) ≥ m+ 5.

Proof. The proof employs the values of br(i) for 0 ≤ r ≤ 2. These are given in
Lemma 10.2 for r = 0, 1, 2. It turns out that b1(0) = b1(1) = b2(0) = b2(1) =
b2(2) = 1. (In case one wonders here if all non-zero terms of br(i) are 1, this is not
true for r ≥ 3).

Direct calculation shows that ν2(B̃(x0)) = ν2(B̃(14)) = 5, and ν2(B̃(x1)) =

ν2(B̃(38)) = 7. Therefore the statement holds for m = 0, 1. Assume the result for

m ≥ 1. Therefore ν2(B̃(xm)) ≥ m + 5. If ν2(B̃(xm)) > m + 5, then by definition

xm+1 = xm, and it follows that ν2(B̃(xm+1)) ≥ m + 6. On the other hand, if

ν2(B̃(xm)) = m+ 5, write B̃(xm) = 2m+5q, with q is odd. Then ym+1 = 2m + ym,
and xm+1 = 24(2m+ym)+14 = 3 ·2m+3+xm. Corollary 7.8 (with n = 3 ·2m+3, j =
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xm, and m replaced by m + 3) and Proposition 8.8 (with m replaced by m + 3),
produce

B̃(xm+1) = B̃(3 · 2m+3 + xm) ≡

2m+3−1∑

r=0

P xm

m+3(0, r)P
dm+3

m+3 (r, 0) mod 22
m+3−1

≡ (1 + 2m+3)P xm

m+3(0, 0) + 6 · 2m+3P xm

m+3(0, 1) + 3 · 2m+3P xm

m+3(0, 2)

+

2m+3−1∑

r=4

P xm

m+3(0, r)P
dm+3

m+3 (r, 0) mod 2m+6.

Proposition 8.8 shows that the first term in the last sum is divisible by 2m+5 and
the second term is divisible by 4. Then, Lemma 10.2 yields

B̃ (xm+1) ≡ (1 + 2m+3)B̃ (xm) + 3 · 2m+4
(
B̃ (xm) + B̃ (xm + 1)

)

+3 · 2m+3
(
B̃ (xm) + B̃ (xm + 1) + B̃ (xm + 2)

)
mod 2m+6.

Since xm+1 ≡ 15 and xm+2 ≡ 16 mod 24, Proposition 7.9 shows that B̃ (xm + 1) ≡

B̃ (xm + 2) ≡ 5 (mod 8). So we find

B̃ (xm+1) ≡ (1 + 2m+3)2m+5q + 3 · 2m+4
(
2m+5q + 5 + 8(∗)

)

+ 3 · 2m+3
(
2m+5q + 5 + 8(∗) + 5 + 8(∗)

)

≡ 2m+5q + 15 · 2m+4 + 15 · 2m+3 + 15 · 2m+3

≡ 2m+5q + 15 · 2m+5 ≡ (q + 15)2m+5 ≡ 0 mod 2m+6.

This completes the inductive step. �

Lemma 10.4. The binary expansion of ym has the form

(10.3) ym =

m∑

i=0

sm,i2
i

and si = lim
m→∞

sm,i exists.

Proof. By construction ym ≤ 2m−1, showing that the binary expansion of ym ends
at 2m−1. Moreover, the binary expansion of ym+1 is the same as that of ym with
possibly and extra leading 1. This confirms the existence of the limit si. �

Note. Step 2 concludes by defining s = (s0, s1, . . .) = (1, 0, 1, 1, 0, 0, 1, 0, 1, 1, . . .).

Theorem 10.5. Let n be a positive integer with binary expansion n =
∑

k bk2
k,

and let ω(n) be the first index for which bk 6= sk. If no such index exists, let

ω(n) = ∞. Then

ν2(B̃(24n+ 14)) = ω(n) + 5.

Note. As discussed in Step 3, there is at most one index n > 2 for which ω(n) = ∞.
This happens when s, defined above, has finitely many ones. In this situation, s is
the binary expansion of this exceptional index. The conjecture of Wilf states that
this situation does not happen.
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Figure 6. The 2-adic valuation of B̃(24n+ 14)

Proof. The notation m = ω(n) is employed in the proof. If m = ∞, then B̃(24n+
14) = 0 and the formula holds. Suppose now that m 6= ∞. Then there is p ∈ N

such that 24n+ 14 = 3 · 2m+3p+ xm.

Write B̃(xm) = 2m+5+iq, with q odd and i ≥ 0. Then, as in the previous proof
(and also using Lemma 8.9), it follows that

B̃(24n+ 14) = B̃
(
3 · 2m+3p+ xm

)

≡ (1 + 2m+3p)2m+5+iq + 3p · 2m+4
(
2m+5+iq + 5 + 8(∗)

)

+ 3p · 2m+3
(
2m+5+iq + 5 + 8(∗) + 5 + 8(∗)

)

≡ 2m+5+iq + 15p · 2m+4 + 15p · 2m+3 + 15p · 2m+3

≡ 2m+5+iq + 15p · 2m+5 ≡ 2m+5(2iq + 15p) mod 2m+6.
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If i = 0, then sm = 1, and p must be even (because this is where n and s disagree).

Thus the quantity in parentheses on the last line is odd, and ν2(B̃(24n + 14)) =
m+ 5. If i > 0, then sm = 0, and p must be odd and, as in the previous case, the
quantity in parentheses is odd. The result follows from here. �

Note. The tree shown in Figure 6 updates Figure 5 by including the 2-adic valu-

ation of B̃(24n + 14). It is a curious fact that ν2(B̃(n)) takes on all non-negative
values except 3 and 4.

Final comment. It remains to decide if the exceptional case exists. If it does not,

then B̃(n) 6= 0 for n > 2, Wilf’s conjecture is true and the sequence ν2(B̃(24n+14))
is unbounded. If this exceptional index exists, then it is unique. Observe that the
exceptional case exists if and only if the sequence xm is eventually constant.

11. Two classes of polynomials

Two families of polynomials have been considered in Lemma 2.1 and Lemma 7.1:
µ0(x) ≡ 1, λ0(x) ≡ 1, and

µj+1(x) = xµj(x) + µj(x+ 1); for n ≥ 0;(11.1)

λj+1(x) = xλj(x)− λj(x+ 1); for n ≥ 0.(11.2)

The corresponding exponential generating functions are provided below.

Lemma 11.1. The polynomials µj and λj have generating functions given by

(11.3)

∞∑

j=0

zj

j!
µj(x) = exz−1+ez and

∞∑

j=0

zj

j!
λj(x) = exz+1−ez .

Proof. Let F (x, z) =
∑

j≥0

zj

j!
µj(x) and G(x, z) = exz−1+ez . Multiplying the polyno-

mial recurrence through by zj/j! yields

µj+1(x)
zj

j!
= xµj(x)

zj

j!
+ µj(x+ 1)

jn

j!
.

Now sum over all non-negative integers j to find

(11.4)
∂

∂z
F (x, z) = xF (x, z) + F (x+ 1, z).

Since G(x+ 1, z) = ezG(x, z), it follows

(11.5)
∂

∂z
G(x, z) = G(x, z)(x+ ez) = xG(x, z) +G(x+ 1, z).

On the other hand, F (x, 0) = µ0(x) = 1 = G(x, 0). Therefore, F (x, z) = G(x, z).
The same argument verifies the second assertion of the lemma. The proof is com-
plete. �

Corollary 11.2. The polynomials µj and λj satisfy

(11.6) µj(0) = B(j) and λj(0) = B̃(j).
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Corollary 11.3. There are double-indexed exponential generating functions for

µj(n), λj(n):

∑

j,n≥0

µj(n)
zjyn

j!n!
= e−1+(y+1)ez ,

∑

j,n≥0

λj(n)
zjyn

j!n!
= e−1+(y−1)ez .

Proof. Direct computation shows

(11.7)
∑

j,n

µj(n)
zjyn

j!n!
=

∑

n

enz−1+ez y
n

n!
= e−1+ez

∑

n

(yez)n

n!

with a similar argument for λj . �

Corollary 11.4. The polynomials µj(x), λj(x) are binomial convolutions of Bell

numbers,

µj(x) =
∑

r

(
j

r

)
B(r)xj−r, λj(x) =

∑

r

(
j

r

)
B̃(r)xj−r.

Proof. This follows directly from

(11.8)
∑

j≥0

µj(x)
zj

j!
= ee

z−1exz =
∑

k≥0

B(k)
zk

k!
×

∑

n≥0

xn z
n

n!

and a similar argument for λj . �

Corollary 11.5. The family of polynomials λj(x) have a missing strip of coeffi-

cients, i.e.

[xj−2]λj(x) = 0.

Proof. Follows from Corollary 11.4 and B̃(2) = 0. �

Define inductively the functions

e(x) = e(1)(x) = 1− ex

e(k+1)(x) = e(e(k)(x)).

These are called super-exponentials. For example,

e(2)(x) = 1− e1−ex and e(3)(x) = 1− e1−e1−e
x

.

Introduce the super-complementary Bell numbers, B̃(k)(n), according to

(11.9)
∑

n≥0

B̃(k)(n)
xn

n!
= 1− e(k+1)(x).

The usual complementary Bell numbers B̃(n) become B̃(1)(n) due to the relation

(11.10)
∑

n

B̃(n)
xn

n!
= e1−ex = 1− e(2)(x).

The next conjecture is a natural extension of Wilf’s original question.

Conjecture 11.6. Let k ∈ N be odd. Then B̃(k)(n) = 0 if and only if n = 2.

For k ∈ N even and k 6= 2, it is conjectured that B̃(k)(n) 6= 0. The case k = 2 is

peculiar: the corresponding conjecture is that B̃(2)(n) = 0 if and only if n = 3.
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Combinatorial meanings: B
(1)
1 (n) = number of set partitions of {1, . . . , n} with

an even number of parts, minus the number of such partitions with an odd number

of parts; B
(2)
1 (n) = number of set partitions of {1, . . . , n} with an even number

of parts, minus the number of such partitions with an odd number of parts, and
then repeating this process for each block. Similar number of chain reactions yield

B
(k)
1 (n). For instance,

(11.11) B̃(2)(n) =

n∑

j=0

(−1)jS(n, j)B̃(j).

Illustrative example. Take n = 3, and partition the set {1, 2, 3}. For k = 1:
{1, 2, 3}; for k = 2: {1, {2, 3}}, {2, {1, 3}}, {3, {1, 2}}; for k = 3: {{1}, {2}, {3}}. In
the next step, partition blocks as follows. When k = 1: {1, 2, 3} is its own partition
as a 1-element set; when k = 2, partition each of {1, {2, 3}}, {2, {1, 3}}, {3, {1, 2}}
as 2-element sets; when k = 3, partition {{1}, {2}, {3}} as a 3-element set. The
resulting collection looks like this:

{1, 2, 3}, {1, {2, 3}}, {{1}, {{2, 3}}}, {2, {1, 3}}, {{2}, {{1, 3}}}, {3, {1, 2}},

{{3}, {{1, 2}}}, {{1}, {2}, {3}}, {{1}, {{2}, {3}}}, {{2}, {{1}, {3}}}, {{3}, {{1}, {2}}},

{{1}, {{2}}, {{3}}}.
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