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Abstract. C. M. Bender and G. V. Dunne showed that linear combinations
of words q

k
p
n
q
n−k, where p and q are subject to the relation qp − pq = ı,

may be expressed as a polynomial in the symbol z = 1

2
(qp + pq). Relations

between such polynomials and linear combinations of the transformed coeffi-
cients are explored. In particular, examples yielding orthogonal polynomials
are provided.

1. Introduction

Operator algebras provide a mathematical setting upon which many physical
theories are built. Stellar among these theories is quantum mechanics with operator
formalism at its core heart. The transition from Classical to Quantum Mechanics
includes replacing the position and momentum by operators p and q acting on a
function f by

(1.1) pf = xf(x) and qf = ı
df

dx
,

called the annihilation and creation operators, respectively. The canonical commu-
tation relation of these operators is

(1.2) [q, p] := qp− pq = ı, with ı =
√
−1.

Non-commutativity is a common feature in mathematical modeling of reality which,
in quantum mechanics, introduces the so-called Heisenberg-Weyl algebra. This new
quality does not come without a price − the order of components in operator suc-
cessions is now relevant and has to be carefully traced in calculations. A traditional
solution to this problem is to standardize the notation by fixing the order of oper-
ators; that is, to use the normally ordered expansion in powers of the form qkpj , in
which all creation operators stand to the left of the annihilation operators.

A word in the letters p’s and q’s is called balanced if it contains the same number
of p and q. Theorem 2.5 shows that every balanced word has a representation as a
polynomial in z = 1

2 (qp+pq). C. M. Bender and G. V. Dunne [4] studied operators
in symmetrized form (an,k = a∗n,n−k, where ∗ denotes complex conjugation),

(1.3)

n
∑

k=0

an,kq
kpnqn−k,

Date: March 4, 2013.
2010 Mathematics Subject Classification. Primary 33C45.
Key words and phrases. continuous Hahn polynomials, Euler numbers, Eulerian numbers,

hypergeometric functions, ordering, orthogonal polynomials, pyramids, Weyl algebra.

1



2 SEQUENCES, POLYNOMIALS AND OPERATOR ORDERINGS

and [4] refers the sequence {an,k} as a pyramid. In this special setup, Theorem 2.5
associates the polynomial

(1.4) Pn(z) =

n
∑

k=0

bn,kz
k

to the sequence {an,k}. The relation between {an,k} and {bn,k} is explicitly given
in Theorems 3.1 and 3.8 by

(1.5) an,k =
1

ınn!

n−k
∑

j=0

(−1)n−k−j

(

n+ 1

n− k − j

) n
∑

r=0

bn,rı
r
(

j + 1
2

)r
for 0 ≤ k ≤ n,

and

(1.6) bn,k = (−1)kın+k
n
∑

ℓ=0

an,ℓ

n−k
∑

j=0

s(n, j + k)

(

j + k

k

)

(

ℓ− 1
2

)j
for 0 ≤ k ≤ n.

Here s(n, k) is the Stirling number of the first kind.

Some results pertinent to these two sequences include:

Proposition 1.1. The polynomial Pn(z) is monic if and only if {an,k} is normal-

ized by an,0 + an,1 + · · ·+ an,n = 1.

Theorem 1.2. The coefficients {bn,r} of Pn(z) are real if and only if the coefficients

{an,k} are hermitian-symmetric; that is if an,k = a∗n,n−k.

Parity of the polynomials Pn(z) appears from symmetries in the pyramid {an,k}.
Proposition 1.3. Assume the coefficients {an,k} are real and symmetric. Then

Pn(z) has the same parity as n.

The next question remains open.

Question 1.4. Determine conditions on a real symmetric pyramid {an,k} in order

to obtain polynomials {Pn(z)} which are orthogonal with respect to a positive weight

function w(x).

It is simple to produce algebraic equations for the first few coefficients of a family

of polynomials Cn(z) =

n
∑

k=0

cn,kz
k in order to be orthogonal.

Lemma 1.5. Assume {Cn(z)} is a family of monic orthogonal polynomials, with

Cn of the same parity as n. Then c4,0 + c2,0c3,1 − c2,0c4,2 = 0 and

c2,0c5,1 + c4,0c5,3 − c2,0c4,2c5,3 + c6,0 − c2,0c6,2 − c4,0c6,4 + c2,0c4,2c6,4 = 0.

As shown in [4], the first condition may be used to prove that certain classical
pyramids, such as the symmetric ordering an,k = δn,k and the Born-Jordan ordering

an,k = 1 do not produce orthogonal polynomials. On the other hand, the Weyl-

ordering an,k =
(

n
k

)

and the case an,k =
(

n
k

)2
satisfy the conditions of Lemma

1.5. The polynomials coming from the Weyl-ordering may be expressed in terms
of the continuous Hahn polynomials (see Example 5.3) and those obtained from

an,k =
(

n
k

)2
can be expressed in terms of the Bateman polynomials (see Example

5.8). It is curious that these seem to be the only powers of binomial coefficients
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that give orthogonal polynomials. Experimental evidence on the basis of the first
condition of Lemma 1.5 rules out the first 50000 power functions

(

n
k

)r
.

Partial results on the pyramids {an,k} associated to the Legendre and Her-
mite polynomials, as examples of orthogonal families, and also for the sequence
Pn(x) = xn, yield pyramids with combinatorial flavor. The complete characteriza-
tion of these pyramids, as well as those corresponding to other classical orthogonal
polynomials, remains an open question.

2. Balanced words in p and q are polynomials in z

Let X = {p, q} be an alphabet. A word over X is an expression of the form

(2.1) w = w1w2 · · ·wk,

with wj ∈ X . The set of all words is denoted by W (X ). The multiplication of
words is defined by concatenation. Every word w over X , with w1 = p, has a
unique representation in the form

(2.2) w = pn1qm1pn2qm2 · · · pnjqmj

with ni, mi ∈ N with the possibility that mj = 0 if the last letter in w is p. A
similar unique representation exists if w1 = q.

Definition 2.1. A word w ∈ X is called balanced if it has the same number of p’s
and q’s, that is, n1 + n2 + · · ·+ nj = m1 +m2 + · · ·+mj .

Definition 2.2. The free algebra FC(X ) is the set

(2.3) FC(X ) =







m
∑

j=1

αjw
(j) : m ∈ N, αj ∈ C and w(j) is a word over X







The results presented here are related to the algebra A obtained from FC(X )
after the identification qp−pq = ı. The fact that this is a non-homogenous element
leads to difficulties in defining a degree. For instance, the elements qp2q, 2ıpq+p2q2,
and 1

4 (qp+ pq)2 + 1
4 all represent the same element in A.

Definition 2.3. The Heisenberg-Weyl algebra A is the quotient algebra

(2.4) A = FC(X )/ {qp− pq = ı} .

Every element w ∈ A has a representation in the form w =

m
∑

j=1

αjw
(j), where

m ∈ N, αj ∈ C, w(j) is a word in {p, q} and qp−pq = ı. In general, there are many
such representations.

Definition 2.4. Define the special subsets of A by

B[p, q] =
{

n
∑

k=0

αn,kw
(j) : for some n ∈ N, αn,k ∈ C and w(j) balanced word in p, q

}

and

H[p, q] =

{

n
∑

k=0

an,kq
kpnqn−k : for some n ∈ N, an,k ∈ R and an,k = an,n−k

}

.

Observe that H[p, q] ⊂ B[p, q], elements in the latter are hermitian.
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The main result of this section is stated next.

Theorem 2.5. Every element of B[p, q] is a polynomial in z = 1
2 (qp+ pq).

Proof. It suffices to prove the result for a balanced word

(2.5) w = pa1qb1pa2qa2 · · · patqbt ,

where aj , bj ≥ 1 for 2 ≤ j ≤ t − 1 and a1, bt ≥ 0. An easy induction argument
proves the recurrences

(2.6) pcq = qpc − [(c− 1)ı+ 1] pc−1 and qcp = pqc + [(c− 1)ı+ 1] qc−1.

Without loss of generality, assume that a1 ≥ 1. Then

w = p
(

pa1−1q
)

qb1−1pa2qb2 · · · patqbt

= p
[

qpa1−1 − ((a1 − 2)ı+ 1) pa1−2
]

qb1−1pa2 · · · qbt

= pq
[

pa1−1qb1−1pa2 · · · qbt
]

− ((a1 − 2)ı+ 1) pa1−1qb1−1pa2 · · · qbt .
The result now follows by induction on the number of p’s and q’s in the word
starting with qp = z + ı/2 and pq = z − ı/2. �

Theorem 4.3 and Proposition 4.4 show that the polynomials associated to ele-
ments of H[p, q] have real coefficients and have the same parity as n.

The next corollary is called a useful identity in [4].

Corollary 2.6. The identity qkpnqn−k = pn−kqnpk holds.

Proof. Simply write

(2.7) qkpnqn−k =
(

qkpk
) (

pn−kqn−k
)

.

The words qkpk and pn−kqn−k are balanced, so they commute. This gives the
result. �

3. An expression for a polynomial in two different bases

Let n ∈ N and an,k ∈ C. Theorem 2.5 gives a polynomial mapO : H[p, q] → C[x]:

(3.1)
n
∑

k=0

an,kq
kpnqn−k 7→ Pn(z) :=

n
∑

r=0

bn,rz
r.

Explicit formulas connecting {an,k} and {bn,k} are given in this section.

Theorem 3.1. The sequence {an,k} is given by

(3.2) an,k =
1

ınn!

n−k
∑

j=0

(−1)n−k−j

(

n+ 1

n− k − j

)

Pn

(

ı
(

j + 1
2

))

for 0 ≤ k ≤ n.

Expanding Pn gives (1.5).

Proof. The realization p = x and q = ı d
dx gives 1

2 (qp + pq) (xm) = ı
(

m+ 1
2

)

xm

and qkpnqn−k (xm) = ınn!
(

m+k
m+k−n

)

xm, with the usual convention that
(

a
b

)

= 0 if
b < 0. It follows that

(3.3)

n
∑

k=0

an,kq
kpnqn−k (xm) = ınn!

m
∑

ℓ=0

(

n+ ℓ

ℓ

)

an,n−m+ℓx
m
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and

(3.4) Pn

(

1
2 (qp+ pq)

)

xm = Pn

(

ı
(

m+ 1
2

))

xm.

Therefore

(3.5) Pn

(

ı
(

m+ 1
2

))

= ınn!

m
∑

ℓ=0

(

n+ ℓ

ℓ

)

an,n−m+ℓ, for 0 ≤ m ≤ n.

Then (3.2) is obtained by solving the linear system (3.5) for an,m, and using the
formula for matrix M−1

n given in the next statement. �

Lemma 3.2. The inverse of the Hankel matrix Mn =

[(

i+ j

n

)]

0≤i,j≤n

is

M−1
n =

[

(−1)n−i−j

(

n+ 1

i+ j + 1

)]

0≤i,j≤n

.

Proof. The claim is equivalent to the identity

(3.6)

n
∑

k=0

(−1)n−i−j

(

i+ k

n

)(

n+ 1

k + j + 1

)

=

{

0 if i 6= j,

1 if i = j.

The proof of (3.6) is a routine application of WZ.

An alternative proof. Consider the Jordan block matrix Jn+1 = Jn+1(i, j)
with zero entries except for 1 when j = i + 1. Then Jk

n+1(i, j) is zero except a

shifted diagonal with 1′s at j = i + k. In particular, Jk
n+1 = 0 for k > n. Thus

M̃n can be expressed as M̃n =

n
∑

k=0

(

n+ k

k

)

Jk
n+1 =

+∞
∑

k=0

(

n+ k

k

)

Jk
n+1. Now use

+∞
∑

k=0

(

n+ k

k

)

zk = (1− z)
−n−1

to conclude that M̃n = (In+1 − Jn+1)
−n−1

. Thus

M̃−1
n = (In+1 − Jn+1)

n+1
=

n
∑

k=0

(

n+ 1

k

)

(−1)
k
Jk
n+1

which proves the result. �

The expression for an,k is particularly simple in the outer diagonal {an,n}.
Proposition 3.3. Let {an,k} be a pyramid with corresponding polynomials {Pn}.
The outer diagonal of the pyramid is given by

(3.7) an,n =
1

ınn!
Pn

( ı

2

)

.

Therefore, if the polynomials Pn have an exponential generating function

(3.8) G(z, t) =

∞
∑

n=0

Pn(z)

n!
tn

then the horizontal generating function for the outer diagonal is

(3.9)

∞
∑

n=0

an,nt
n = G

(

ı

2
,
t

ı

)

.
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The authors of [4] state that apparently, the classical orthogonal polynomials give

pyramids with ugly entries. The result of Proposition 3.3 gives expressions for the
outer diagonal {an,n}.

Example 3.4. The Legendre polynomials

(3.10) Pn(x) =
1
(

2n
n

)

∑

m≥0

(−1)m
(

n

m

)(

2n− 2m

n

)

xn−2m,

normalized to be monic, form a sequence of orthogonal polynomials. The corre-
sponding (non-normalized) pyramid is

1
1 1

7 10 7
17 103 103 17

203 2948 7138 2948 203
583 20091 100286 100286 20091 583

Proposition 3.3 gives

(3.11) an,n =
n!

2n(2n)!

n
∑

j=0

22j
(

n

j

)(

2n− 2j

n

)

.

Example 3.5. The (monic) Hermite polynomials are defined by

(3.12) Hn(x) =
n!

2n

⌊
n
2 ⌋
∑

m=0

(−1)m

m!(n− 2m)!
(2x)n−2m.

The corresponding pyramid is

1
1 1

3 2 3
7 17 17 7

25 76 182 76 25
27 159 454 454 159 27

The information to state the next Lemma came from OEIS, entry A047974.

Lemma 3.6. The outer diagonal sequence {an,n} of the pyramid corresponding

to the Hermite polynomials is given by an,n = hn/2
nn!, where {hn} satisfies the

recurrence hn = hn−1 +2(n− 1)hn−2, h1 = 1, h2 = 3. An explicit representation

of {hn} is given by

(3.13) hn =
1

2
√
π

∫ ∞

−∞

xne−(x−1)2/4 dx,

so that hn can be interpreted as the moment of order n of a Gaussian random

variable X, with mean 1 and variance 2.

Proof. The sequence {an,n} is related to the (monic) Hermite polynomials by the
statement of Proposition 3.3. The details follow from the recurrence for the Hermite
polynomials: 2Hn+1(x) = 2xHn(x)− nHn−1(x). �
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Example 3.7. The Chebyshev polynomials Tn are given by

(3.14) Tn(x) =
1

2

[

(x+
√

x2 − 1)n + (x−
√

x2 − 1)n
]

.

In this case (3.7) gives

an,n =
1

ınn!
Tn

( ı

2

)

=
1

2n!

[(

1 +
√
5

2

)n

+

(

1−
√
5

2

)n]

.

This yields an,n = Ln/2n! where Ln is the Lucas number. The corresponding result
for the Chebyshev polynomials of the second kind Un(x) gives an,n = Fn+1/n!,
with Fn is the Fibonacci number. The proof is based on Binet’s formula

(3.15) Fn =

(

1 +
√
5
)n −

(

1−
√
5
)n

2n
√
5

.

Theorem 3.1 provided an expression for {an,k} in terms of the associated poly-
nomial sequence {Pn}. The next result gives the polynomial Pn(x) in terms of the
sequence {an,k}.
Theorem 3.8. The polynomials Pn(z) associated to the sequence {an,k} are given

by

(3.16) Pn(z) = ınn!

n
∑

k=0

an,k

(−ız − 1
2 + k

n

)

= ın
n
∑

k=0

an,n−k

(

−ız + 1
2 − k

)

n
,

where (x)n is the shifted factorial defined by (x)n = x(x+1) · · · (x+n−1). Expanding
in powers of z gives (1.6).

Proof. The result follows directly from formula (3.5), that gives Pn(ı(m + 1
2 )) for

0 ≤ m ≤ n (a total of n+1 points), remarking that (3.5) holds in fact for all m ∈ R

when written in the equivalent form

(3.17) Pn

(

ı
(

m+ 1
2

))

= ınn!

n
∑

k=0

an,k

(

m+ k

n

)

.

To obtain (1.6), use (y)k =

k
∑

j=0

s(k, j)(y + k − 1)j , the generating function of the

Stirling numbers. �

The 1-dimensional Weyl algebra A1 is the free algebra with two generators R
and D together with the commutation relation RD − DR = 1. This is a parallel
version of the Heisenberg-Weyl algebra A discussed in Section 2. Each u ∈ A1 can
be expressed uniquely in the normal form u =

∑

j,k αj,kR
jDk. The connection to

lattice paths or Ferrer diagrams is natural and well-known. To see this, assume
u has n and m letters of R and D, respectively. Construct a walk from (0,m) to
(n, 0) as follows: by reading u from left to right, move a unit right (resp. down)
step if the letter is R (resp. D). See references [5, 6, 9, 14] for details.

The algebra A1 allows alternative proofs for some of the results given in this
section. Among the properties of A1 used, the following ones are easy to establish
by induction:

(3.18) DkRk =
k
∏

j=1

(DR− j + 1), RkDn =
k
∑

j=0

(

k

j

)

(n− j + 1)jD
n−jRk−j .
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If D = ıq and R = p, then

(3.19) RD −DR = 1, O(qnpn) = ınO(DnRn).

In this setting, the proof of Theorem 3.8 begins with the introduction of x :=
RD + DR = 2DR + 1, so that DR = x−1

2 . Note that D = iq and R = p yields
x = ı(pq + qp) = 2ız. To complete the proof, use (3.18) to find

O(qnpn) = ın
n
∑

k=0

an,k

k
∑

j=0

(

k

j

)

(n− j + 1)jD
n−jRk−jRn−k

= ın
n
∑

k=0

an,k

k
∑

j=0

(

k

j

)

(n− j + 1)jD
n−jRn−j

= ın
n
∑

k=0

an,k

k
∑

j=0

(

k

j

)

(n− j + 1)j

k
∏

m=1

(

1
2x−m+ 1

2

)

.

The transformation of the last expression to (3.16) is automatic with the WZ
method.

Definition 3.9. The polynomials appearing in Theorem 3.8 are denoted by

(3.20) Qn,k(z) :=

(−ız − 1
2 + k

n

)

=
1

n!

n−1
∏

ℓ=0

(−ız − 1
2 + k − ℓ).

These are the polynomials associated to the homogeneous elementary words con-
sidered by Bender-Dunne:

(3.21) Qn,k(z) =
1

ınn!
O
(

qkpnqn−k
)

.

Theorem 3.10. The polynomials {Qn,k(z) : 0 ≤ k ≤ n} form a basis for the vector

space of polynomials of degree at most n.

Proof. Each Qn,k(z) is a polynomial of degree n, so it suffices to establish their
linear independence. Fix n ∈ N. From (1.6) and (3.21) it follows that the coefficient
of xr in Qn,k(x) is

(3.22)
(−ı)r

n!

n−r
∑

j=0

s(n, j + r)

(

j + r

r

)

(

k − 1
2

)j
.

Now suppose

n
∑

k=0

uk(n)Qn,k(x) = 0. The vanishing of the coefficient of xr gives the

system of equations

(3.23)
n
∑

k=0

uk(n)
n−r
∑

j=0

s(n, j + r)

(

j + r

r

)

(

k − 1
2

)j
= 0

for 0 ≤ r, k ≤ n. Let S = (Sr,k) be the (n+ 1)× (n+ 1) matrix with entries

(3.24) Sr,k =

n−r
∑

j=0

s(n, j + r)

(

j + r

r

)

(

k − 1
2

)j
,

so that (3.23) is Su = 0, where u is the vector (uk(n)). The independence of
{Qn,k(x)} is equivalent to the invertibility of S. Observe the factorzation S = XY
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where X = (Xa,b) and Y = (Ya,b) with Xa,b =
(

a+b
b

)

s(n, a+b) and Ya,b =
(

b− 1
2

)a
.

The matrix X is upper triangular, xa,b = 0 if a + b > n and Y is a Vandermonde
matrix. Therefore

(3.25) detX =

n
∏

a=0

(

n

a

)

and detY =
∏

j<k

[(

k − 1
2

)

−
(

j − 1
2

)]

=

n
∏

i=0

i!,

proving that detS =

n
∏

k=1

kk and S = XY is invertible. �

Corollary 3.11. The balanced words
{

qkpnqn−k : 0 ≤ k ≤ n
}

form a basis for the

class of balanced words of weight n.

The next result phrases Theorem 3.10 in the language of the Weyl algebra A1.

Theorem 3.12. The set S =
{

RjDk : j, k ≥ 0
}

is a basis for A1.

Proof. As before, it suffices to verify linear independence. Let K = C[x, y] be a
commutative polynomial ring, with basis {xjyk : j, k ≥ 0} over C. Define the
linear operators R and D on K by

(3.26) R
(

xjyk
)

= xj+1yk and D
(

xjyk
)

= jxj−1yk + xjyk+1.

A direct calculation shows that RD −DR = 1 on K, and hence C[x, y] is a repre-
sentation of the Weyl algebra A1. To verify linear independence, suppose

(3.27) L :=
∑

j,k

αj,kR
jDk = 0.

A direct computation gives Dk(1) = yk and Rj(yk) = xjyk. Thus, the value
L(1) = 0 gives αj,k = 0 which proves independence. �

Problem. A word w = w0w1 · · ·wn in A1 (where each wk = p or q) is a palindrome

if wn−k = wk for 0 ≤ k ≤ n. The ‘adjoint’ of a monomial word w = w0w1 · · ·wn is
the word w∗ = wn · · ·w1w0. This is extended to z in A1 by linearity. The element
z is called Hermitian if z = z∗. For instance p and q are Hermitians, but pq is not,
since (pq)∗ = q∗p∗ = qp. Question: Is it true that a monomial word w is Hermitian
if and only if w is a palindrome? It is clear that if w is a palindrome, then w is
Hermitian. The questions is to decide on the converse.

4. Polynomials versus pyramids

This section discusses how certain properties of the pyramids {an,k} are reflected
on the corresponding polynomials Pn(z).

Proposition 4.1. The polynomial Pn(z) is monic if and only if {an,k} is normal-

ized by an,0 + an,1 + · · ·+ an,n = 1.

Proof. The polynomial

(4.1)

(−ız − 1
2 + k

n

)

=
1

n!

n−1
∏

j=0

(−ız − 1
2 + k − j)

has leading coefficient (−ı)n/n!. Theorem 3.8 now shows that the leading coefficient
of Pn(z) is the sum of {an,k}. �



10 SEQUENCES, POLYNOMIALS AND OPERATOR ORDERINGS

The next statement clarifies the condition of hermitian-symmetry imposed on
the pyramids [4]. The analysis begins the following observation.

Lemma 4.2. The polynomial Qn,k(x) defined in (3.20), with x ∈ R, satisfies the

symmetry identity Q∗
n,k(x) = (−1)nQn,n−k(x).

Proof. This follows directly from

Q∗
n,k(x) =

1

n!

n−1
∏

ℓ=0

(

−ıx− 1
2 + k − ℓ

)∗
=

(−1)n

n!

n−1
∏

ℓ=0

(

−ıx+ 1
2 − k + ℓ

)

.

�

The next result characterizes real polynomials Pn.

Theorem 4.3. The coefficients {bn,r} of Pn(z) are real if and only if the coefficients

{an,k} are hermitian-symmetric; that is if an,k = a∗n,n−k.

Proof. The identity Pn(x)
∗ = (−ı)nn!

n
∑

k=0

a∗n,kQn,k(x) and Lemma 4.2 show that

bn,r real is equivalent to

(4.2)
n
∑

k=0

an,kQn,k(x) =
n
∑

k=0

a∗n,n−kQn,k(x).

The result now follows from Theorem 3.10. �

Proposition 4.4. Assume the coefficients {an,k} are real and symmetric. Then

Pn has the same parity as n.

Proof. Use the identity Qn,k(−x) = (−1)nQn,n−k(x) established in the same way
as in the proof of Lemma 4.2. �

5. Necessary conditions for orthogonality

Properties of the pyramid {an,k} reflect on those of the associated sequence of
polynomials {Pn}. For instance, if {an,k} is normalized (total sum equal to 1), real
and symmetric (an,k = an,n−k), then {Pn} are monic, with real coefficients and Pn

has the same parity as n. The question considered in this section is to determine
conditions on {an,k} that yield orthogonal polynomials.

Recall that a family of polynomials {Cn} is called orthogonal if there is a positive
weight function w(z) such that

(5.1) 〈Cn, Cm〉 :=
∫

R

Cn(z)Cm(z)w(z) dz =

{

wn > 0 if n = m,

0 if n 6= m.

Now assume that Cn(z) =
n
∑

k=0

cn,kz
k is a family of monic, orthogonal poly-

nomials with Cn of the same parity as n. The orthogonality of {Cn} yields a se-
quence of algebraic equations that the coefficients {cn,k} must satisfy. For instance,
〈C0, C2〉 = 0 gives

(5.2)
[

z2
]

+ c2,0 [1] = 0,
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where

(5.3) [za] =

∫

R

zaw(z) dz.

Similarly, the orthogonality of the pairs {C0, C4} and {C1, C3} yield
[

z4
]

+ c4,2
[

z2
]

+ c4,0 [1] = 0(5.4)
[

z4
]

+ c3,1
[

z2
]

= 0.

The vanishing of the corresponding determinant gives

(5.5) c4,0 + c2,0c3,1 − c2,0c4,2 = 0.

Looking at the first six polynomials gives, among many, the relation

(5.6) c2,0c5,1 + c4,0c5,3 − c2,0c4,2c5,3 + c6,0 − c2,0c6,2 − c4,0c6,4 + c2,0c4,2c6,4 = 0.

Example 5.1. The symmetric ordering has an,0 = an,n = 1
2 and an,k = 0 if

k 6= 0, n. Theorem 3.8 gives

(5.7) Pn(z) =
ın

2

[

(−ız + 1
2 − n)n + (−ız + 1

2 )n
]

.

The first few values appear in [4]:

P0(z) = 1, P1(z) = z, P2(z) = z2 − 3
4 , P3(z) = z3 − 23

4 z, P4(z) = z4 − 43
4 z2 + 105

16 .

This sequence of polynomials is not orthogonal since condition (5.5) is not satisfied.

Example 5.2. The polynomials corresponding to the Born-Jordan ordering have
an,k = 1

n+1 for 0 ≤ k ≤ n. Theorem 3.8 gives

(5.8) Pn(z) =
ın

n+ 1

n
∑

k=0

(

−ız + 1
2 − k

)

n
.

The first few values also appear in [4]:

P0(z) = 1, P1(z) = z, P2(z) = z2 − 5
12 , P3(z) = z3 − 11

4 z, P4(z) = z4 − 19
2 z2 + 189

80 .

Condition (5.5) does not hold, so this sequence is not orthogonal.

Example 5.3. The Weyl ordering has an,k = 2−n
(

n
k

)

, and (3.16) give the polyno-
mials

(5.9) Pn(z) =
ın

2n

n
∑

k=0

(

n

k

)

(−ız + 1
2 − k)n.

The first few values may be found in [4]:

P0(z) = 1, P1(z) = z, P2(z) = z2 − 1
4 , P3(z) = z3 − 5

4z, P4(z) = z4 − 7
2z

2 + 9
16 .

The condition (5.5) is now satisfied, so one might expect that these polynomials
form an orthogonal family. It is stated in [4] that

(5.10) Pn(z) =
n!

(2ı)n
3F2

(

−n, n+ 1, 1
4 − ız

2
1
2 , 1

∣

∣

∣

∣

1

)

.

To verify (5.10) from (5.9) is equivalent to the identity

(5.11)

n
∑

k=0

(

n

k

)

(−ız + 1
2 − k)n = (−1)nn!3F2

(

−n, n+ 1, 1
4 − ız

2
1
2 , 1

∣

∣

∣

∣

1

)

.

The left-hand side of (5.11) is written now in hypergeometric form.
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Lemma 5.4. For n ∈ N

(5.12)

n
∑

k=0

(

n

k

)

(−ız + 1
2 − k)n = (−ız − n+ 1

2 )n 2F1

(

−n, 1
2 − ız

1
2 − n− ız

∣

∣

∣

∣

−1

)

.

Proof. It suffices to verify

(5.13)

n
∑

k=0

(

n

k

)

(m+ 1− k)n = (m− n+ 1)n 2F1

(−n,m+ 1

m− n+ 1

∣

∣

∣

∣

−1

)

obtained from (5.12) with z = ı(m + 1
2 ), as both sides are polynomials in z. This

is accomplished by writing the left-hand side as

(5.14)
n
∑

k=0

n!

(n− k)! k!

(m+ 1− n+ k)n
(m− n+ 1)n

and using

(5.15)
n!

(n− k)!
= (−1)n(−n)k and

(m+ 1− n+ k)n
(m− n+ 1)n

=
(m+ 1)k

(m+ 1− n)k
.

This proves the result. �

Therefore (5.10) is equivalent to
(5.16)

(−ız − n+ 1
2 )n 2F1

(

−n, 1
2 − ız

1
2 − n− ız

∣

∣

∣

∣

−1

)

= (−1)nn! 3F2

(

−n, n+ 1, 1
4 − ız

2
1
2 , 1

∣

∣

∣

∣

1

)

.

This is proved by observing again that both sides are polynomials in z, so it suffices
to verify (5.16) when z = ı

(

m+ 1
2

)

and m ∈ N. The identity becomes

(5.17)
(m− n+ 1)n

n!
2F1

(−n,m+ 1

m− n+ 1

∣

∣

∣

∣

−1

)

= (−1)n3F2

(

−n, n+ 1, m+1
2

1
2 , 1

∣

∣

∣

∣

1

)

.

In detail,
(5.18)

(m− n+ 1)n
n!

n
∑

k=0

(−1)k(−n)k(m+ 1)k
k!(m− n+ 1)k

= (−1)n
n
∑

k=0

(−n)k(n+ 1)k
(

m+1
2

)

k

(1)kk!
(

1
2

)

k

.

The method of Wilf-Zeilberger (WZ) described in [11] shows that both sides of
(5.18), with m fixed, satisfy the recurrence

(5.19) (n+ 2)u(n+ 2,m)− (2m+ 1)u(n+ 1,m)− (n+ 1)u(n,m) = 0.

Upon verifying the value for n = 0 and n = 1, the assertion (5.18) follows.

Note 5.5. The result (5.17) also follows from entries 102 and 103 in page 540 of
[12]. The stated identity is

(5.20) 3F2

( −n, a, b
a−n
2 , 1+a−n

2

∣

∣

∣

∣

1

)

=
(2b− a+ 1)n

(1− a)n
2F1

( −n, 2b

2b− a+ 1

∣

∣

∣

∣

−1

)

,

and (5.17) is obtained by choosing a = n+ 1, b = m+1
2 .
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Note 5.6. The left-hand side of (5.18) can be reduced to

(5.21) c(n,m) :=

n
∑

k=0

(

m+ k

m

)(

m

n− k

)

=

m
∑

k=0

(

n+ k

m

)(

m

k

)

.

The equality of the two versions of c(n,m) follows from (5.19). These coefficients
have remarkable properties which is a topic deferred to [2].

Note 5.7. The hypergeometric representation of the polynomials Pn(z) given in
(5.10) shows that Pn(z) may be expressed in terms of the continuous Hahn polyno-

mials

pn(z; a, b, c, d) = ın
(a+ c)n(a+ d)n

n!
3F2

(−n, n+ a+ b+ c+ d− 1, a+ ız

a+ c, a+ d

∣

∣

∣

∣

1

)

.

The identity (5.10) shows that

(5.22) Pn(z) =
(−1)n2n
(

2n
n

) pn

(

−z

2
;
1

4
,
3

4
,
1

4
,
3

4
, n

)

.

This is discussed in [7] and [8].
The continuous Hahn polynomials satisfy the orthogonality condition

1

2π

∫ ∞

−∞

Γ(a+ ız)Γ(b+ ız)Γ(c− ız)Γ(d− ız)pn(z; a, b, c, d)pm(z; a, b, c, d) dz

= δn,m
Γ(n+ a+ d)Γ(n+ b+ c)Γ(n+ a+ c)Γ(n+ b+ d)

n!(2n+ a+ b+ c+ d− 1)Γ(n+ a+ b+ c+ d− 1)
.

In the special case appearing here, using the identity
∣

∣Γ
(

1
2 + ız

)∣

∣

2
= π sech(πz),

the polynomials Pn(z) are orthogonal on R with weight function w(z) = sech(πz)
and generating function

(5.23)

∞
∑

n=0

(2t)n

n!
Pn(z) =

exp(2z) arctan t√
1 + t2

.

Example 5.8. The second example corresponds to the coefficients an,k =
(

2n
n

)−1(n
k

)2
.

Theorem 3.8 now gives

(5.24) Pn(z) =
ın(n!)3

(2n)!

n
∑

k=0

(

n

k

)2(−ız − 1
2 + k

n

)

.

To identify this class of polynomials it is convenient to convert them to hypergeo-
metric form to produce

(5.25) Pn(z) =
ın(n!)3

(2n)!
3F2

(

−n,−n, 1
2 − ız

1, 1
2 − ız − n

∣

∣

∣

∣

1

)

,

as remarked in [4].
An alternative form of these polynomials is given next.

Lemma 5.9. The polynomials Pn(z) in (5.25) are given by

(5.26) Pn(z) =
(−ı)n(n!)3

(2n)!
3F2

(−n, n+ 1, 1
2 − ız

1, 1

∣

∣

∣

∣

1

)

.
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Proof. Both sides are polynomials in z, so it suffices to verify the identity

(5.27) 3F2

(−n, n+ 1,m+ 1

1, 1

∣

∣

∣

∣

1

)

= (−1)n
(

m

n

)

3F2

(−n,−n,m+ 1

1,m− n+ 1

∣

∣

∣

∣

1

)

,

obtained from the value z =
(

m+ 1
2

)

ı. This may be written in the equivalent form

(5.28)

n
∑

k=0

(−1)k
(

n+ k

k

)(

m+ k

k

)(

n

k

)

= (−1)n
n
∑

k=0

(

n

k

)2(
m+ k

n

)

.

A direct calculation shows that the identity holds for n = 0, 1 and the WZ-method
shows that both sides satisfy the recurrence

(5.29) (n+ 2)2u(n+ 2,m) + (2m+ 1)(2n+ 3)u(n+ 1,m)− (n+ 1)2u(n,m) = 0.

�

Note 5.10. The polynomials in Lemma 5.9 can be expressed in terms of the Bate-
man polynomials (see Section 18.19 in [10]):

(5.30) Fn(z) = 3F2

(−n, n+ 1, 1+z
2

1, 1

∣

∣

∣

∣

1

)

as Pn(z) =
(−ı)n(n!)3

(2n)!
Fn(−2ız).

It is curious that these seem to be the only powers of binomial coefficients that give
orthogonal polynomials. The powers up to 50000 have been excluded using the first
condition in Lemma 1.5.

6. Pyramid for the monomial zn

For enumerative purposes, denote [n] := {1, . . . , n} and [−n, n] := {±1, . . . ,±n}.
The symmetric group Sn is the set of permutations of [n]. The signed permutation

group Bn (or, hyperoctahedral group) is the permutations π of [−n, n], provided
π(−k) = −π(k). In the literature, Sn (resp. Bn) is a Coxeter group type A (resp.
type B). A descent is a position k where the permutation value has decreased:
π(k − 1) > π(k). Convention: π(0) := 0. The classical Eulerian sequence An,k of
type A (resp. Eulerian sequence Bn,k of type B) enumerates Sn (resp. Bn) with
k descents. The corresponding Eulerian polynomials of type A and type B are
defined, respectively, by An(x) =

∑n
k=0 An,kx

k and Bn(x) =
∑n

k=0 Bn,kx
k.

The polynomials An(x) and Bn(x) have the following rational generating func-
tions:

An(x)

(1− x)n+1
=

∞
∑

k=0

(k + 1)nxk, and
Bn(x)

(1− x)n+1
=

∞
∑

k=0

(2k + 1)nxk.

As a direct consequence, we find the connections

B2n(x) = (1− x)nAn(x), and B2n+1(x) = (1− x)nAn+1(x).

Several authors (see [1, 3, 13]) considered some quantum extensions of Eulerian
polynomials.

The pyramid corresponding to the polynomials Pn(z) = zn is given by Theorem
3.1 as

(6.1) an,k =
1

n!2n

n−k
∑

j=0

(−1)n−k−j

(

n+ 1

n− k − j

)

(2j + 1)n.

Define Bn,k = 2nn!an,k. The rest of the section shows that Bn,k are the coefficients
of type B polynomials.
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Lemma 6.1. The numbers Bn,k are integers with bivariate generating function

(6.2)

∞
∑

n=0

(

n
∑

k=0

Bn,kx
k

)

zn

n!
=

(1− x)e(1−x)z

1− xe2z(1−x)
.

Letting x → 1 shows that {an,k} are normalized; that is an,0+an,1+ · · ·+an,n = 1.

Letting x = −1 in (6.2) gives a relation between the numbers Bn,k and the Euler

numbers En defined by the generating function

∞
∑

n=0

En
zn

n!
=

1

cosh z
.

Corollary 6.2. The numbers Bn,k satisfy

n
∑

k=0

(−1)kBn,k = 2nEn.

The numbers Bn,k resemble the Eulerian numbers

〈

n
k

〉

, the coefficients of the

type A polynomials, with bivariate generating function

(6.3)
∞
∑

n=0

(

n
∑

k=0

〈

n
k

〉

xk

)

zn

n!
=

(1− x)e(1−x)z

1− xez(1−x)
.

The similarity extends to the explicit expressions

(6.4) Bn,n−k = (−1)n
k
∑

j=0

(−1)j
(

n+ 1

2k + 1− j

)

(2k + 1− 2j)n

and

(6.5)

〈

n
k

〉

=

k
∑

j=0

(−1)j
(

n+ 1

j

)

(k + 1− j)n.
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