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Abstract. The modified Bernoulli numbers

B∗

n
=

n
∑

r=0

(n+ r

2r

) Br

n+ r
, n > 0

introduced by D. Zagier in 1998 were recently extended to the polynomial case
by replacing Br by the Bernoulli polynomials Br(x). Arithmetic properties of

the coefficients of these polynomials are established. In particular, the 2-adic
valuation of the modified Bernoulli numbers is determined. A variety of ana-
lytic, umbral, and asymptotic methods is used to analyze these polynomials.

1. Introduction

The Bernoulli numbers Bn, defined by the generating function

(1.1)
t

et − 1
=

∞
∑

n=0

Bn
tn

n!
,

were extended by D. Zagier [17] with the introduction of the so-called modified

Bernoulli numbers B∗
n defined by

(1.2) B∗
n =

n
∑

r=0

(

n+ r

2r

)

Br

n+ r
.

Note that B∗
0 is undefined. Arithmetic properties of B2n (B1 = − 1

2 and B2n+1 = 0,
for n > 0), include the von Staudt–Clausen theorem which states that, for n > 0,

(1.3) B2n ≡ −
∑

(p−1)|2n
p prime

1

p
mod 1.

It follows that the denominator of B2n is the product of all primes p such that
p− 1 divides 2n. On the other hand, the numerators of B2n are still a mysterious
sequence.

The definition (1.2) shows that B∗
n is a rational number. Write it in reduced

form and define

(1.4) αn = denom(B∗
n).
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Zagier [17] showed that

(1.5) B̃n = 2nB∗
n −Bn

satisfies

(1.6) B̃n ≡
∑

(p+1)|n
p prime

1

p
mod 1, (n > 0, n even)

that implies

(1.7) 2nB∗
n ≡ −

∑

(p−1)|n
p prime

1

p
+

∑

(p+1)|n
p prime

1

p
mod 1, (n > 0).

This statement shows that if p is a prime dividing αn (defined in (1.4)), then at
least one of p, p − 1 and p + 1 divides n. In particular, all prime factors p of αn

satisfy p ≤ n + 1. In fact, from computing the first 1000 terms, it appears that,
conjecturally, the following stronger statement is true: if p is a prime dividing αn,
then p+ 1 or p− 1 divides n.

The first few values of the sequence {B∗
n} are

3

4
,
1

24
,−1

4
,−27

80
,−1

4
,− 29

1260
,
1

4
,
451

1120
,
1

4
,− 65

264
, . . .

Our particular interest will be in the 2-adic properties of this sequence and the
2-adic valuation of B∗

n will be worked out completely. A guiding question motivated
by the first few terms as above is:

Question 1.1. Is the denominator αn always divisible by 4?

This basic question will become particularly relevant when considering the cor-
responding modifications of Bernoulli polynomials. This is addressed at the end of
this introduction.

It turns out that α2n+1 = 4, so only even indices need to be considered. The
first few values of 1

4α2n are given by

(1.8) 6, 20, 315, 280, 66, 3003, 78, 9520, 305235, 20900, 138, 19734, 6, 7540, . . .

This sequence has been recently added to OEIS (the database created by N.
Sloane) as entry A216912. The next figure shows the 2-adic valuation of α2n; that
is, the highest power of 2 that divides α2n.
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Figure 1. Power of 2 that divides denominator of B∗
2n
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Symbolic computations lead us to discover the next result. In particular, this
answers Question 1.1 in the affirmative.

Theorem 1.2. For n > 0,

ν2(αn) = −ν2(B∗
n) = 2 + ν2(n)−











1 if n ≡ 6 mod 12,

2 if n ≡ 0 mod 12,

0 otherwise.

In particular, B∗
n, the denominator of αn, is divisible by 4.

Note that this may be rephrased in the following way: The 2-adic valuations
ν2(8nB

∗
2n) form a periodic sequence of period 6 with values

(1.9) {0, 0, 1, 0, 0, 2} .
This is an unexpected variation on the period 6 theme: D. Zagier proved that the
sequence {B∗

2n+1} is 6-periodic.
The modified Bernoulli numbers B∗

n were extended in [6] to the Zagier polyno-
mials defined by

(1.10) B∗
n(x) =

n
∑

r=0

(

n+ r

2r

)

Br(x)

n+ r
,

so that B∗
n = B∗

n(0). The first few are:

1

4
(2x+ 3),

1

24

(

6x2 + 18x+ 1
)

,
1

12
(2x+ 3)

(

x2 + 3x− 1
)

,

1

80

(

10x4 + 60x3 + 90x2 − 27
)

,
1

60
(2x+ 3)

(

3x4 + 18x3 + 23x2 − 12x− 5
)

, . . .

In analogy to αn in (1.4), define, for j ∈ Z,

(1.11) αn,j = denom(B∗
n(j)).

It is shown in Lemma 3.2 of Section 3 that, under the assumption that 4 divides
αn, the denominators αn,j equal αn for any j ∈ Z. Combining this with Theorem
1.2, one obtains:

Theorem 1.3. The denominator αn,j = denom(B∗
n(j)) does not depend on the

value j ∈ Z.

Special values of B∗
n(x) present interesting arithmetic properties. The relation

(1.12) B∗
n(x+ 1) = B∗

n(x) +
1

2
Un−1

(x

2
+ 1
)

,

relating B∗
n to the Chebyshev polynomial of the second kind, appears as Lemma

10.2 in [6]. In particular, this shows the identity

(1.13) B∗
n(1) = B∗

n +
n

2
.

On the other hand, the values B∗
n(−1) are connected to the asymptotic expansion

of the function

(1.14) V (z) = log z + ψ

(

z +
1

z

)
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at z → 0. Here, ψ(z) is the digamma function

(1.15) ψ(z) =
Γ′(z)

Γ(z)
,

the logarithmic derivative of the gamma function. The proof of the next statement
appears in Section 7.

Theorem 1.4. Define the numbers vn by the asymptotic expansion

(1.16) V (z) ∼
∞
∑

n=0

vnz
n.

Then vn = −2B∗
n(−1).

The value v2n−1 = (−1)n/2 is simple to obtain, but

(1.17) v2n = (−1)n+1

[

1

n
+

n
∑

k=1

(−1)k
(

n+ k − 1

n− k

)

B2k

2k

]

requires further work.
A second motivation for considering the sequence {vn} comes from the natural

interest in the sequence {B∗
2n}. The established fact that {B∗

2n+1} is 6-periodic has
no obvious analog for the even indices. It turns out that the function V (z) satisfies

(1.18)

∞
∑

n=1

B∗
2nz

2n = −1

2
V (z)− z

4

[

1

z2 + 1
+

2(1− z4)

1− z6

]

,

thus connecting B∗
2n and vn.

A variety of expressions for the coefficients vn are provided. Section 6 gives
one using the umbral method and Section 7 exploits a relation between the Zagier
polynomials B∗

n and the Chebyshev polynomials Un(x) to determine vn. A direct
asymptotic method is used in Section 8 and Section 9 presents a family of poly-
nomials that determine vn. The classical integral representation of the digamma
function is used in Section 10, the formula of Faà di Bruno to differentiate compo-
sitions is used in Section 11 and, finally, a recurrence for vn is analyzed in Section
12 by the WZ-method [14].

2. The 2-adic valuation of B∗
n

The goal of this section is to establish Theorem 1.2 which determines the 2-adic
valuation of the sequence B∗

n.
The strategy employed here is as follows. It is a consequence of the von Staudt–

Clausen congruence that the Bernoulli numbers 2Bn are 2-integral. From this one
may conclude that the rational numbers 4nB∗

n are 2-integral as well. In particu-
lar, these numbers can be reduced modulo powers of 2 to determine their 2-adic
valuation. Here, it will be sufficient to reduce them modulo 8. To begin with, the
classical Bernoulli numbers are reduced modulo 8.

Proposition 2.1. The following congruences hold modulo 8:

2B0 ≡ 2, 2B2 ≡ 3, 2B2k ≡
{

1 if k even,
5 if k odd,

with k > 1.
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Proof. The von Staudt–Clausen theorem states that

(2.1) pB2k ≡ p− 1 mod pℓ+1

for p prime, k ≥ 2 and when (p− 1)pℓ divides 2k; see [13], formula 24.10.2 on page
593. Now take p = 2 and ℓ = 1. Then for k ≥ 2 it follows that 2B2k ≡ 1 mod 4.
Therefore 2B2k ≡ 1 or 5 mod 8. In the case k is even, one may take ℓ = 2, since
then (p− 1)pℓ = 4 divides 2k. Therefore

(2.2) 2B2k ≡ 1 mod 8.

A different proof of this fact appears in [4]. The identity established there is

(2.3) 2B2k ≡ 1 mod 2r+1

where 2r is the highest power of 2 that divides 2k. In particular, for k even, r ≥ 2
and the result follows.

The case k odd requires a different approach.

Let Um be the numerator and Vm the denominator of Bm, so that Bm = Um/Vm
and (Um, Vm) = 1, Vm > 0. Voronoi’s congruence [11, Proposition 15.2.3] states
that, if m ≥ 2 is even and a, n are positive integers with (a, n) = 1, then

(am − 1)Um ≡ mam−1Vm

n−1
∑

j=1

jm−1

[

ja

n

]

mod n.

As usual, [x] refers to the greatest integer less than or equal to x. It follows from
the von Staudt–Clausen congruence that 2B2m has 2-adic valuation 0 for m > 0,
so that they are 2-integral. Voronoi’s congruence with a = 3 and n = 64 therefore
yields

(3m − 1)2Bm ≡ 2m 3m−1
63
∑

j=1

jm−1

[

3j

64

]

mod 64.

One easily checks that, for even m, 3m − 1 ≡ 4m modulo 64. Similarly, after
checking finitely many cases, for m ≡ 2 modulo 4 with m ≥ 6,

3m−1
63
∑

j=1

jm−1

[

3j

64

]

≡ 42 mod 64.

Combining these, one finds, for m ≡ 2 modulo 4 with m ≥ 6,

2Bm
m

2
≡ 5

m

2
mod 8.

Hence, if m = 2k with k ≥ 3 odd, then 2Bm ≡ 5 modulo 8. �

Further basic ingredients are the following generating functions.
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Proposition 2.2. The following generating functions admit rational closed-forms:

2 +

∞
∑

n=1

xn
n
∑

k=0

(

n+ k

2k

)

2n

n+ k
=

2− 3x

1− 3x+ x2
,(2.4)

2 +

∞
∑

n=1

xn
⌊n/2⌋
∑

k=0

(

n+ 2k

4k

)

2n

n+ 2k
=

(1− 2x)
(

2− 2x+ x2
)

(1− x+ x2) (1− 3x+ x2)
,

2 +
∞
∑

n=1

xn
⌊n/2⌋
∑

k=0

(−1)
k

(

n+ 2k

4k

)

2n

n+ 2k
=

2− 6x+ 7x2 − 2x3

1− 4x+ 7x2 − 4x3 + x4
.

Proof. These readily follow from the generating function for Tn(x), the Chebyshev
polynomials of the first kind, given by

(2.5)

∞
∑

n=0

Tn(x)t
n =

1− xt

1− 2xt+ t2

and from the fact

(2.6)

n
∑

r=0

(

n+ r

2r

)

xr

n+ r
=

1

n
Tn

(x

2
+ 1
)

proved as Lemma 9.1 in [6]. �

Equipped as such, a proof of Theorem 1.2 is given next. The statement of this
theorem is repeated for the convenience of the reader.

Theorem 2.3. For n > 0,

−ν2(B∗
n) = 2 + ν2(n)−











1 if n ≡ 6 mod 12,

2 if n ≡ 0 mod 12,

0 otherwise.

Proof. It is convenient to remark at the beginning that the case of odd n is simple
and is a consequence of Zagier’s result on the periodicity of the sequence B∗

2n+1.
Working modulo 8 and using Proposition 2.1, it follows that 2B0 ≡ 2, 2B1 ≡ −1,

2B2 ≡ 3 and for k > 1,

2B2k ≡ 3− 2 (−1)
k
.

Note that
(

n+k
2k

)

2n
n+k is an integer. Thus it follows from (1.2) that 4nB∗

n is a
2-adic integer. For n ≥ 1, these numbers reduce modulo 8 to

4nB∗
n =

⌊n/2⌋
∑

k=0

(

n+ k

2k

)

2n

n+ k
2Bk

= −n2 +
⌊n/2⌋
∑

k=0

(

n+ 2k

4k

)

2n

n+ 2k
2B2k

≡ −n2 + 2− n

(

n+ 1

3

)

+

⌊n/2⌋
∑

k=0

[

3− 2 (−1)
k
]

(

n+ 2k

4k

)

2n

n+ 2k
,
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where in the second equality, the −n2 term comes from the contribution of B1 =
−1/2, the only nonzero Bernoulli number of odd index. Also, for the final congru-
ence, adjusting for the k = 0 and k = 1 cases in which 2B0 = 2 and 2B2 = 1/3 ≡ 3
respectively, produces the extra terms

(

n

0

)

2n

n
(2B0 − 1) +

(

n+ 2

4

)

2n

n+ 2
(2B2 − 5) ≡ 2− n

(

n+ 1

3

)

.

Using Proposition 2.2 modulo 8 now gives

4 +

∞
∑

n=1

4nB∗
nx

n ≡ 2

1− x
− x (1 + x)

(

1 + x2
)

(1− x)
5 + 3

(1− 2x)
(

2− 2x+ x2
)

(1− x+ x2) (1− 3x+ x2)

− 2
2− 6x+ 7x2 − 2x3

1− 4x+ 7x2 − 4x3 + x4
,

where it is readily verified that the right-hand side is a rational function whose
coefficients modulo 8 are periodic with period 24. The even part simplifies to

∞
∑

n=1

8nB∗
2nx

2n ≡ x
(

3 + x+ 6x2 + x3 + 3x4 + 4x5
)

1− x6
.

This implies

ν2 (8nB
∗
2n) =







0 if (n, 3) = 1,
1 if n ≡ 3 mod 6,
2 if n ≡ 0 mod 6,

which proves the claim. �

3. The denominators of B∗
n(j)

The goal of this section is to establish Theorem 1.3. It states that the denomi-
nator of B∗

n(j) does not depend on j ∈ Z. The proof begins with the identity

(3.1) B∗
n(x+ 1) = B∗

n(x) +
1

2
Un−1

(x

2
+ 1
)

,

appearing as Lemma 10.2 in [6] which establishes a relation between the Zagier
polynomials and the Chebyshev polynomials of the second kind Un(x).

Lemma 3.1. For every half-integer x, the numbers Un(x) are integers.

Proof. This is clear upon using the determinant representation

Un(x) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2x 1 0

1 2x
. . .

. . .
. . . 1

0 1 2x

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(3.2)

for the Chebyshev polynomial. To verify (3.2) denote the determinant by Dn(x).
By expansion by minors, it follows that Dn+1(x) = 2xDn(x)−Dn−1(x). The same
recurrence is satisfied by Un(x) and a direct computation gives Dn(x) = Un(x) for
n = 1, 2. Thus, Un(x) = Dn(x) for all n ∈ N.

An alternative proof employs the generating function of the Un(x) polynomials

(3.3)
∑

k≥0

Uk(x)t
k =

1

1− 2xt+ t2
.
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Choosing x = p
2 with p integer, it follows that

(3.4)
∑

m≥0

Um

(p

2

)

tm =
1

1− pt+ t2
=

1

1− t(p− t)
=
∑

k≥0

tk(p− t)k

since by choosing t small enough, |t(p− t)| < 1. The coefficient of tm in this sum,
which is Um

(

p
2

)

, is clearly an integer. �

Lemma 3.2. The denominator of B∗
n(j) is independent of j ∈ Z. In other words,

for all j ∈ Z,

(3.5) denomB∗
n(j) = denomB∗

n.

Proof. Assume j > 0. It is a consequence of Theorem 1.2 that the denominator of
B∗

n is divisible by 4, and thus is 4t for some t ∈ Z.
Assume, therefore, by induction that the denominator of B∗

n(j) is 4t as well; that
is, in reduced form

(3.6) B∗
n(j) =

x

4t
,

with x = x(j) an odd integer. The identity (3.1) coupled with Lemma 3.2 gives

(3.7) B∗
n(j + 1) =

x

4t
+
w

2
=
x+ 2wt

4t
,

with w ∈ Z. The last fraction in (3.7) is also in reduced form. Indeed, the numerator
is odd so there is no cancellation of the factor 4 and if p is an odd prime that divides
both x + 2wt and 4t, then it divides gcd(x, t) = 1. Therefore B∗

n(j + 1) also has
denominator 4t, the denominator of B∗

n. This proof easily adapts to the case when
j is negative. �

4. An asymptotic expansion related to the numbers B∗
n

The generating function
∞
∑

n=1

B∗
n(x)z

n = −1

2
log z − 1

2
ψ (z + 1/z − 1− x)

appears as Theorem 5.1 of [6]. Here ψ(z) is the digamma function

(4.1) ψ(z) =
Γ′(z)

Γ(z)
,

the logarithmic derivative of the gamma function. The asymptotic expansion for
the auxiliary function

(4.2) V (z) = log z + ψ

(

z +
1

z

)

as z → 0 in the form

(4.3) V (z) ∼
∞
∑

n=0

vnz
n

will yield a relation between the numbers B∗
n and the sequence vn in (4.3).

The value of α2n+1 has been established in [6].

Theorem 4.1. For j ∈ Z, the coefficients 4B∗
2n+1(j) are odd integers. This gives

(4.4) α2n+1 = 4.
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The generating function for the much more involved case of α2n is
∞
∑

n=1

B∗
2n(j)z

2n = −1

2
log z − 1

4
ψ

(

z +
1

z
+ 2 + j

)

− 1

4
ψ

(

z +
1

z
− 1− j

)

.

This was given in Corollary 5.3 of [6] and can be converted to
∞
∑

n=1

B∗
2n(j)z

2n = −1

2
log z − 1

2
ψ

(

z +
1

z

)

−1

4

j+1
∑

r=0

[

z

z2 + rz + 1
+

z

z2 − rz + 1

]

+
z

4(z2 + 1)

using

(4.5) ψ(u+ k) = ψ(u) +

k−1
∑

r=0

1

u+ r
.

Now use the function V (z) defined in (4.2) to obtain

(4.6)

∞
∑

n=1

B∗
2n(0)z

2n = −1

2
V (z)− z

4

[

1

z2 + 1
+

2(1− z4)

1− z6

]

.

This identity shows that Question 1.1 is indeed equivalent to the rational num-
bers v2n having even denominators.

A direct symbolic computation gives the values of the first few vn as

(4.7)

{

0, −1

2
,
11

12
,
1

2
, −13

40
, −1

2
,
29

630
,
1

2
,
109

560
, −1

2
,− 67

132
,
1

2
,
6571

6006

}

.

This data suggests that |vn| = 1/2 for n odd but no simple pattern is observed for
n even.

5. The use of bounds on ψ(z)

The first approach to the computation of the coefficients vn is to use bounds for
the digamma function ψ(z) and its derivatives that exist in the literature. This
process succeeds only for small values of n.

Proposition 5.1. The function V (z) satisfies

(5.1) lim
z→0+

V (z) = 0,

that is, v0 = 0.

Proof. The inequality

(5.2)
1

2z
< log z − ψ(z) <

1

z

was established by H. Alzer [2]. This gives

(5.3) log(z2 + 1)− z

z2 + 1
< V (z) < log(z2 + 1)− z

2(z2 + 1)

and the result follows from here. The inequality (5.2) has been improved by F. Qi
and B. Guo [10] to

(5.4) log

(

z +
1

2

)

− 1

z
< ψ(z) < log

(

z + e−γ
)

− 1

z
.
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�

The next statement shows the computation of v1. It requires sharper bounds on
the derivative ψ′(x). The proof presented below should be seen as a sign that a
different procedure is desirable for the evaluation of general vn.

Proposition 5.2. The function V (z) satisfies

(5.5) lim
z→0+

V ′(z) = −1

2
,

that is, v1 = −1/2.

Proof. The inequalities

(5.6)
(k − 1)!

zk
+

k!

2zk+1
< (−1)k+1ψ(k)(z) <

(k − 1)!

zk
+

k!

zk+1
, for z > 0,

are established in [8]. In the special case k = 1 they produce

(5.7)
1

z
+

1

2z2
< ψ′(z) <

1

z
+

1

z2
.

It turns out that the lower bound gives a sharp result for V ′(z) as z → 0+. Indeed,

(5.8) V ′(z) =

(

1− 1

z2

)

ψ′

(

z +
1

z

)

+
1

z
<

4z3 + z2 + 4z − 1

2(1 + z2)2
.

The reader should check that the upper bound does not give useful information.
Instead the inequality

(5.9) ψ′(z) < e1/z − 1,

established in [9], is used to produce

(5.10) V ′(z) >

(

z2 − 1

z2

)[

exp

(

z

z2 + 1

)

− 1

]

+
1

z
.

The result now follows by letting z → 0 in (5.8) and (5.10). �

The computation of vn by this procedure requires bounds on all derivatives of
ψ(x). The examples discussed above shows that this is not an efficient procedure.
The next section presents an alternative.

6. The computation of vn by umbral calculus

The goal of this section is to compute the coefficients vn in the expansion (4.3) by
the techniques of umbral calculus. The reader is referred to [6] for an introduction
to these techniques and for the statements used in this section.

Introduce the auxiliary function

(6.1) F (x) = ψ

(

1

x

)

+ log x,

for x > 0 and observe that

(6.2) V (z) = F

(

z

z2 + 1

)

+ log(z2 + 1).

Theorem 6.1. The function F (x) admits the asymptotic expansion

(6.3) F (x) ∼
∞
∑

n=1

(−1)n+1Bn

n
xn.
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Proof. The integral representation

(6.4) ψ(z) = log z +

∫ ∞

0

e−tz

(

1

t
− 1

1− e−t

)

dt

produces

(6.5) F (x) =

∫ ∞

0

e−t/x

(

1

t
− 1

1− e−t

)

dt.

Set s = t/x to obtain

(6.6) F (x) =

∫ ∞

0

e−s

s

(

1− sxesx

esx − 1

)

ds.

The generating function for the Bernoulli polynomials

(6.7)
text

et − 1
=

∞
∑

n=0

Bn(x)
tn

n!

yields

F (x) =

∫ ∞

0

e−s

s

(

1−
∞
∑

n=0

Bn(1)(sx)
n

n!

)

ds

= −
∫ ∞

0

e−s

s

∞
∑

n=1

Bn(1)(sx)
n

n!
ds

= −
∞
∑

n=1

Bn(1)x
n

n!

∫ ∞

0

e−ssn−1 ds.

The result now follows from Bn(1) = (−1)nBn. �

Note 6.2. The asymptotic behavior

(6.8) |B2n| ∼ 4
√
πn
( n

πe

)2n

shows that the series in (6.3) does not converge for x 6= 0.

The result in Theorem 6.1 is now transformed using the umbral method described
in [6]. The essential point is the introduction of an umbra B for the Bernoulli
polynomials Bn(x) by the generating function

(6.9) eval {exp(tB(x))} =
text

et − 1

The rules eval (Bn) = Bn and eval (B(x)) = eval {x+B} are useful in converting
identities involving Bernoulli polynomials.

Theorem 6.3. The coefficients vn in the expansion (4.3) are given by

(6.10) vn =

⌊n/2⌋
∑

k=0

(−1)n−k+1

(

n−k
k

)

n− k
Bn−2k.

Proof. The result of Theorem 6.1 can be written as

F (x) =
∞
∑

n=1

(−1)n+1

n
(xB)n(6.11)

= log(1 + xB).
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Then

V (x) = F

(

x

x2 + 1

)

+ log(x2 + 1)

= eval

(

log

(

1 +
xB

x2 + 1

)

+ log(x2 + 1)

)

= eval
(

log
(

x2 + 1 + xB
))

= eval

(

∞
∑

r=1

(−1)r+1

r
xr(x+B)r

)

=
∞
∑

r=1

(−1)r+1

r
xrBr(x)

=
∞
∑

r=1

(−1)r+1xr

r

r
∑

k=0

(

r

k

)

Br−kx
k.

Now let n = r + k and invert the order of summation to obtain the result. �

Separating the expression for the coefficients vn given in (6.10) according to the
parity of n, simplifies the result.

Corollary 6.4. The coefficients vn in (4.3) are given by

v2n−1 =
(−1)n

2
,(6.12)

v2n = (−1)n+1

[

1

n
+

n
∑

k=1

(−1)k
(

n+ k − 1

n− k

)

B2k

2k

]

.(6.13)

7. Properties of Zagier polynomials give the expression for vn

This section presents a proof of the expressions for vn given in Corollary 6.4 by
using properties of the Zagier polynomials established in [6].

Theorem 5.1 in [6] gives the generating function of the Zagier polynomials

(7.1)

∞
∑

n=1

B∗
n(x)z

n = − log z

2
− 1

2
ψ

(

z +
1

z
− 1− x

)

that for x = −1 yields

(7.2)

∞
∑

n=1

B∗
n(−1)zn = − log z

2
− 1

2
ψ

(

z +
1

z

)

.

Comparing with the asymptotics for V (z) given in (4.3) gives the next statement.

Proposition 7.1. The coefficients vn are given by

(7.3) vn = −2B∗
n(−1).

To obtain an expression for B∗
n(−1) use (3.1) with n replaced by 2n + 1 and

x = −1. It follows that

(7.4) B∗
2n+1(−1) = B∗

2n+1(0)−
1

2
U2n

(

1

2

)

.
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The reduction of this expression uses Theorem 10.1 in [6] in the form

(7.5) 2B∗
2n+1(x) =

n
∑

r=0

(−1)n+r

(

n+ r + 1

2r + 1

)

B2r+1(x)

n+ r + 1
+U2n

(x

2

)

+U2n

(

x+ 1

2

)

,

which in the special case x = 0 produces

(7.6) B∗
2n+1(0) =

(−1)n

4
+

1

2
U2n

(

1

2

)

using U2n(0) = (−1)n. Inserting in (7.4) gives the result for odd index.
In the case of even index, the proof starts with the reflection symmetry of the

Zagier polynomials

(7.7) B∗
n(−x− 3) = (−1)nB∗

n(x)

(given as Theorem 11.1 in [6]) which in the special case x = −2 gives

(7.8) −2B∗
2n(−1) = −2B∗

2n(−2).

To obtain the expression for v2n, use the identity (10.10) in [6]

(7.9)
n
∑

r=0

(−1)n+r

(

n+ r

2r

)

B2r(x)

n+ r
= 2B∗

2n(x− 2)

in the special case x = 0. This gives the values of vn stated in Corollary 6.4. Thus
(6.13) and (7.8) imply (7.3).

8. Calculation of vn by an asymptotic method

The goal of this section is to derive the formula for vn by a direct asymptotic
expansion of the digamma function:

(8.1) ψ(z) ∼ log z − 1

2z
−

∞
∑

k=1

B2k

2kz2k
, as z → ∞.

Start with

(8.2) V (z) = ψ

(

z2 + 1

z

)

− log

(

z2 + 1

z

)

+ log(z2 + 1)

and use (8.1) to obtain

V (z) ∼ −
∞
∑

k=1

Bk

k

(

z

z2 + 1

)k

+ log(z2 + 1)

=
z

2(z2 + 1)
−

∞
∑

k=1

B2k

2k

(

z

z2 + 1

)2k

+ log(z2 + 1)

=

∞
∑

n=1

(−1)n+1

n
z2n − 1

2

∞
∑

n=0

(−1)nz2n+1 −
∞
∑

k=1

B2k

2k
z2k

∞
∑

ℓ=0

(−1)ℓ(ℓ− 1 + 2k)!

ℓ!(2k − 1)!
z2ℓ.

The coefficient of the odd powers of z can be read immediately. Indeed,

(8.3) v2n−1 =
(−1)n

2
.
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This is (6.12). To obtain the expression for the even powers, observe that

∞
∑

k=1

B2k

2k
z2k

∞
∑

ℓ=0

(−1)ℓ(ℓ− 1 + 2k)!

ℓ!(2k − 1)!
z2ℓ =

∞
∑

i=1

(−1)i

(

i
∑

k=1

(−1)k
(

i+ k − 1

2k − 1

)

B2k

2k

)

z2i.

This gives

(8.4) v2n =
(−1)n

n
+

n
∑

k=1

(−1)k
(

n+ k − 1

2k − 1

)

B2k

2k
.

This is equivalent to (6.13) and also to (7.9) with x = 0.

An expression for v2n in terms of Chebyshev polynomials in given next.

Proposition 8.1. Let Tn(x) be the Chebyshev polynomial of the first kind. Then

(8.5) v2n = −eval

(

1

n
T2n

(

B

2

))

= − 1

n
Tn

(

B
2 − 2

2

)

.

Proof. Lemma 9.2 in [6] established the representation

(8.6) B∗
n(x) = eval

(

1

n
Tn

(

B+ x+ 2

2

))

.

The relation (7.8) gives v2n = −2B∗
2n(−2) so that

(8.7) v2n = −eval

(

1

n
T2n

(

B

2

))

.

The result now follows from the identity T2n(x) = Tn(2x
2 − 1) for Chebyshev

polynomials; see [3], 7.210 formula 7 on page 550. �

9. The asymptotics of ψ(z) and its derivatives

The coefficients vn in the expansion (4.3) are now evaluated from the expression

(9.1) vn =
1

n!
lim
z→0

(

d

dz

)n

V (z).

The next theorem shows existence of a sequence of polynomials Aj,n(z) that give
the desired formula for derivatives of V (z). Theorem 9.2 presented below provides
an explicit form of these polynomials.

Theorem 9.1. Let n ∈ N. Then there are polynomials Aj,n(z), with 1 ≤ j ≤ n
such that

(9.2) z2n
(

d

dz

)n

V (z) = (−1)n−1(n− 1)!zn +

n
∑

j=1

Aj,n(z)ψj(z + 1/z).

The polynomials Aj,n(z) satisfy the recurrences

An+1,n+1(z) = (z2 − 1)An,n(z),

Aj,n+1(z) = −2nzAj,n(z) + z2A′
j,n(z) + (z2 − 1)Aj−1,n(z) for 2 ≤ j ≤ n,

A1,n+1(z) = −2nzA1,n(z) + z2A′
1,n(z),

and the initial condition

A1,1(z) = z2 − 1.

The degree of Aj,n(z) is n+ j − 2 if 1 ≤ j ≤ n− 1 and 2n for j = n.
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Proof. The term (−1)n−1(n − 1)!z−n arises from the n-th derivative of log z. To
obtain the recurrences, simply observe that

(

d

dz

)n+1

ψ (z + 1/z) =

(

d

dz

)



z−2n
n
∑

j=1

Aj,n(z)ψj (z + 1/z)





and compare the coefficients of ψj(z + 1/z). The statement about the degree of
Aj,n(z) is obtained directly from the recurrence. �

The next theorem gives an explicit form of the polynomials Aj,n(z). The authors
wish to thank C. Koutschan who used his symbolic package to solve the recurrences
in Theorem 9.1.

Theorem 9.2. The polynomials Aj,n(z) are given by

(9.3) An,n(z) = (z2 − 1)n

and for 1 ≤ j < n,

(9.4) Aj,n(z) = (−1)n
n!

j!
zn−j

j−1
∑

r=0

(−1)r
(

n− 1− r

n− j

)(

j

r

)

z2r.

Proof. Simply check that the form stated in this theorem satisfies the recurrence
given in Theorem 9.1. �

Note 9.3. The package of C. Koutschan actually gives the form

(9.5) Aj,n(z) = (−1)nzn−j

(

n− j

j − 1

)(

n

j

)

(n− j)! 2F1

(

1− j,−j; 1− n; z2
)

.

The hypergeometric representation of the Jacobi polynomials

(9.6) P (α,β)
m (x) =

(

m+ α

m

)

2F1

(

−m,m+ α+ β + 1;α+ 1;
1− x

2

)

shows that

(9.7) Aj,n(z) = (−1)n+j−1n!

j
zn−jP

(−n,n−2j)
j−1 (1− 2z2).

Note 9.4. The coefficients vn are now obtained from (9.1) and the identity

(9.8)

(

d

dz

)n

V (z) = (−1)n−1(n− 1)!z−n + z−2n
n
∑

j=1

Aj,n(z)ψj(z + 1/z).

This employs the expansion

(9.9) ψ(j)(z) = ψj(z) ∼ (−1)j−1

[

(j − 1)!

zj
+

j!

2zj+1
+

∞
∑

k=1

B2k
(2k + j − 1)!

(2k)! z2k+j

]

,

(that appears as 6.4.11 in [1]). The polygamma function, which appear differenti-
ating (4.2) to obtain (9.1), has argument z + 1/z. Thus (9.9) is used in the form

ψj(z + 1/z) ∼ (−1)j−1

[

(j − 1)!zj

(z2 + 1)j
+

j!zj+1

2(z2 + 1)j+1
+

∞
∑

k=1

B2k(2k + j − 1)!z2k+j

(2k)!(z2 + 1)2k+j

]

=
(−1)j−1zj

(z2 + 1)j

∞
∑

k=0

(−1)k(k + j − 1)!

k!

Bkz
k

(z2 + 1)k
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as z → 0.

Proposition 9.5. The asymptotic expansion

ψj(z + 1/z) ∼ (−1)j−1

2
zj+1

∞
∑

r=0

(−1)r(j + r)!

r!
z2r

+(−1)j−1zj
∞
∑

ℓ=0

[

ℓ
∑

k=0

(−1)ℓ−kB2k
(k + j + ℓ− 1)!

(2k)! (ℓ− k)!

]

z2ℓ

holds as z → 0.

A direct non-illuminating computation of the expansion in (9.8) gives the values
of vn in Theorem 6.4. Given the fact that other proofs of this result have been
provided, the long but elementary details are omitted.

10. Calculation of vn via integral representations and the Faà di

Bruno formula

This section employs the integral representation

(10.1) ψ(x) = log x+

∫ ∞

0

(

1

t
− 1

1− e−t

)

e−tx dt,

of the digamma function, given as entry 8.361.8 in [7], to obtain the values of vn
given in Corollary 6.4.

Lemma 10.1. The function V (z) in (4.2) is expressed as

(10.2) V (z) = log(z2 + 1) +

∫ ∞

0

(

1

t
− 1

1− e−t

)

e−t(z+1/z) dt.

The representation (10.2) reduces the computation of vn to the asymptotic ex-
pansion of

(10.3) W (z) =

∫ ∞

0

(

1

t
− 1

1− e−t

)

e−t(z+1/z) dt.

Indeed, if

(10.4) V (z) ∼
∞
∑

n=0

vnz
n and W (z) ∼

∞
∑

n=0

wnz
n,

then v2n−1 = w2n−1 and v2n = w2n + (−1)n−1/n. The next lemma is preliminary
to the computation of this expansion.

Lemma 10.2.
(

z

z2 + 1

)2n

=

∞
∑

k=n

(−1)k−n

(

n+ k − 1

k − n

)

z2k

Proof. Use the binomial series

(z2 + 1)−2n =

∞
∑

i=0

(−2n

i

)

z2i

to find
(

z

z2 + 1

)2n

=

∞
∑

i=0

(−2n

i

)

z2n+2i =

∞
∑

k=n

( −2n

k − n

)

z2k.
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Now use the elementary identity
( −2n

k − n

)

= (−1)k−n

(

n+ k − 1

k − n

)

to obtain the result. �

To find the asymptotic expansion of the function W (z) defined in (10.3), let
s = z/(z2 + 1), and use the change of variable x = t/s to get

W (z) =

∫ ∞

0

1

x

(

1− xsexs

exs − 1

)

e−xdx

=

∫ ∞

0

1

x

(

1−
∞
∑

n=0

Bn(1)

n!
(xs)

n

)

e−xdx

= −
∫ ∞

0

1

x

∞
∑

n=1

Bn(1)

n!
(xs)

n
e−xdx.

The infinite series is not uniformly convergent as z → 0, and interchanging the
sum with the integral does not provide a convergent series. But the resulting series
(with radius of convergence zero) will be the asymptotic expansion of W (z):

W (z) ∼ −
∞
∑

n=1

Bn(1)

n!
sn
∫ ∞

0

xn−1e−xdx

= −
∞
∑

n=1

Bn(1)

n!
sn(n− 1)! = −

∞
∑

n=1

Bn(1)

n

(

z

z2 + 1

)n

= − z

2(z2 + 1)
−

∞
∑

n=1

B2n(1)

2n

(

z

z2 + 1

)2n

.

The expression for the coefficients wn corresponding to (6.13) now follows from
Lemma 10.2.

An alternative approach based on the integral representation 10.1 uses the Faà
di Bruno formula and the partial Bell polynomials. Write

ψ̃(x) = ψ(x)− log x =

∫ ∞

0

(

1

t
− 1

1− e−t

)

e−xtdt,

so that W (z) = ψ̃(h(z)) with h(z) = z + 1/z and

ψ̃(k)(x) =

∫ ∞

0

(−t)k
(

1

t
− 1

1− e−t

)

e−xtdt.

Define

(10.5) Ik(z) =

∫ ∞

0

(−t)k
(

1

t
− 1

1− e−t

)

e−t(z+1/z)dt = ψ̃(k)(h(z)).

The partial Bell polynomial Bn,k in the n − k + 1 variables x1, . . . , xn−k+1 is
defined by

Bn,k(x1, . . . , xn−k+1) =
∑

σ(n,k)

n!

j1!j2! · · · jn−k+1!

(x1
1!

)j1 (x2
2!

)j2
· · ·
(

xn−k+1

(n− k + 1)!

)jn−k+1

,
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where the sum is over the set σ(n, k) of all non-negative integer sequences j1, j2, . . . , jn−k+1

such that

j1 + j2 + · · ·+ jn−k+1 = k and j1 + 2j2 + · · ·+ (n− k + 1)jn−k+1 = n.

The Faà di Bruno formula for the n-th derivative of the composition W = ψ̃ ◦ h
is then expressed as

W (n)(z) =

n
∑

k=1

ψ̃(k)(h(z))Bn,k

(

h′(z), · · · , h(n−k+1)(z)
)

=

n
∑

k=1

Ik(z)Bn,k

(

h′(z), · · · , h(n−k+1)(z)
)

.(10.6)

The next lemma provides some results on the partial Bell polynomials. A useful
reference is [5], page 133-137.

Lemma 10.3.

(10.7) Bn,k(x1, st
2x2, st

3x3, st
4x4, · · · ) = sktnBn,k

(x1
st
, x2, x3, · · ·

)

(10.8) Bn,k(x1, x2, . . .) =
n!

(n− k)!

k
∑

ℓ=0

1

ℓ!
xℓ1Bn−k,k−ℓ

(x2
2
,
x3
3
, . . .

)

(10.9) Bn,k(1!, 2!, 3!, . . .) =

(

n− 1

k − 1

)

n!

k!
.

Proof. The proof of (10.7) follows easily from the definition, noting that 3j2+4j3+
· · · = n+ k − 2j1. Formula (10.8) is entry [3.l] on [5], and (10.9) is entry [3.h]. �

Lemma 10.4. The partial Bell polynomials satisfy

(10.10) Bn,k

(

h′(z), · · · , h(n−k+1)(z)
)

=
(−1)nn!

zn+k

k
∑

ℓ=0

1

ℓ!

(

n− k − 1

k − ℓ− 1

)

(1− z2)ℓ

(k − ℓ)!
.

Proof. Note that h′(z) = 1− z−2, and h(i)(z) = (−1)ii!z−i−1 for i > 1. Hence the
result easily follows from (10.7) (with s = −1/z, t = 1/z), (10.8) and (10.9). �

The next result expresses the integrals Ik(z) defined in (10.5) in terms of the
Hurwitz zeta function

(10.11) ζ(s, q) =

∞
∑

n=0

1

(n+ q)s
.

Proposition 10.5. The integral Ik(z) is given by

Ik(z) =
(−1)k (k − 1)! zk

(z2 + 1)k
+ (−1)k−1k!ζ(k + 1, z + 1/z)

= (−1)k−1(k − 1)!zk

[

kz

∞
∑

m=0

1

(z2 +mz + 1)k+1
− 1

(z2 + 1)k

]

.
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Proof. The definition of the gamma function as

(10.12) Γ(s) =

∫ ∞

0

ts−1e−t dt

and the integral representation for the Hurwitz zeta function

(10.13) ζ(s, q) =
1

Γ(s)

∫ ∞

0

ts−1 e−qt dt

1− e−t

are used in

Ik(z) = (−1)k
∫ ∞

0

tk−1e−t(z+1/z) dt− (−1)k
∫ ∞

0

tk

1− e−t
e−t(z+1/z) dt

to obtain the result. �

The integrals Ik(z) are now expressed in terms of the Bernoulli numbers. The
proof is similar to the one given for Lemma 10.2, so the details are omitted.

Proposition 10.6. The identity

(10.14)

Ik(z) = (−1)k−1k!

(

z

z2 + 1

)k+1
(

1

2
+

∞
∑

i=1

B2i

k + 2i

(

k + 2i

k

)(

z

z2 + 1

)2i−1
)

holds.

According to (10.6), the n-th derivative of W (z) is obtained by multiplying
(10.10) and (10.14) and summing over k. The coefficients v2n are then found as

v2n =
W (2n)(0)

(2n)!
+

(−1)n−1

n
.

In order to find explicit formulas for W (2n)(0), (10.4) and (10.14) are expanded
in powers of z, and then the constant term in the sum is selected. Note that (10.4)
is of order z−n−k as z → 0, while (10.14) is of order zk+1. So the product is of order
z−(n−1). Since W (n)(z) is bounded as z → 0, after summing over k all coefficients
of zi for i < 0 must vanish.

The computations to derive v2n with this approach are trivial but lengthy, and
the resulting expression (involving multiple nested sums of binomial coefficients) is
not particularly illuminating, so they are omitted. The vanishing of the coefficients
of negative powers comparing it with (6.13) yields a family of identities.

Proposition 10.7. Let

A(i, j, k, ℓ,m, r)

= (−1)i+j+k

(

k

ℓ

)(

ℓ

r

)(

k + 2i

k

)(

2m− k − 1

k − ℓ− 1

)(

k + i+m− r − j − 1

k + 2i− 1

)

B2i

k + 2i
.

Then

2m
∑

k=1

k
∑

ℓ=0

m
∑

r=0

m−r−j
∑

i=1

A(i, j, k, ℓ,m, r) =











0 if j > 0,
m
∑

s=1

(−1)s
(

m+ s− 1

m− s

)

B2s

2s
if j = 0.



20 M. COFFEY ET AL.

11. Calculation of vn by Hoppe’s formula

The function V (z) in (4.2) can be written as

(11.1) V (z) = F (g(z)) + log(z2 + 1)

with

(11.2) F (z) = ψ

(

1

z

)

+ log z and g(z) =
z

z2 + 1
.

The expansion

(11.3) log(z2 + 1) =

∞
∑

n=1

(−1)n−1

n
z2n

is elementary, therefore the coefficients vn in the expansion (4.3) are now evaluated
from F (g(z)).

Hoppe’s formula for the derivative of compositions of functions is stated in the
next theorem. See [12] for details.

Theorem 11.1. Assume that all derivatives of g and F exist, then

(11.4)

(

d

dz

)n

F (g(z)) =

n
∑

k=0

Pn,k(g(z))

k!
F (k)(g(z)),

where

(11.5) Pn,k(g(z)) =
k
∑

j=0

(−1)k−j

(

k

j

)

[g(z)]
k−j

(

d

dz

)n

[g(z)]
j

and Pn,0(0) = 0 for n > 0.

Hoppe’s formula is now used to compute the n-th derivative of the function
F (g(z)), where F is defined in (11.2) and g(z) = z/(z2 + 1). The formula requires

(11.6) F (k)(z) =

(

d

dz

)k

F (z) and

(

d

dz

)n

[g(z)]
j
.

These terms are computed next.

Lemma 11.2. Let F (z) = ψ(1/z) + log z and ψr(z) =
(

d
dz

)r
ψ(z). Then, if k ≥ 1,

(11.7) F (k)(z) =
(−1)kk!

zk

k
∑

r=1

1

r!zr

(

k − 1

r − 1

)

ψr

(

1

z

)

+
(−1)k−1(k − 1)!

zk
.

Proof. Hoppe’s formula gives

(11.8)

(

d

dz

)k

ψ

(

1

z

)

=
k
∑

r=0

1

r!
Pk,r

(

1

z

)

×
(

d

dz

)r

ψ(z)
∣

∣

∣

z→1/z
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with

Pk,r

(

1

z

)

=

r
∑

ℓ=0

(−1)r−ℓ

(

r

ℓ

)(

1

z

)r−ℓ(
d

dz

)k [
1

zℓ

]

(11.9)

=
(−1)r+k

zr+k

r
∑

l=0

(−1)ℓ
r! (ℓ+ k − 1)!

ℓ!(r − ℓ)!(ℓ− 1)!

=
(−1)k

zr+k
k!

(

k − 1

r − 1

)

for r ≥ 1 and Pk,0(1/z) = 0. The last step uses the evaluation

(11.10)

r
∑

ℓ=0

(−1)ℓr! (ℓ+ k − 1)!

ℓ! (r − ℓ)! (ℓ− 1)!
= (−1)rk!

(

k − 1

r − 1

)

.

�

Lemma 11.3. For g(z) = z/(z2 + 1) and n, j ∈ N:

(

d

dz

)n

[g(z)]j = n!

∞
∑

r=0

(−1)r
(

j + r − 1

r

)(

2r + j

n

)

z2r+j−n.

Proof. The binomial theorem gives

(11.11)

(

z

z2 + 1

)j

= zj(1 + z2)−j =

∞
∑

r=0

(−1)r
(

j + r − 1

j − 1

)

z2r+j .

Differentiating n times yields the result. �

The terms in Theorem 11.1 are now written as

F (k)(g(z)) = (−1)kk!
k
∑

r=1

(

k−1
r−1

)

r!

(z2 + 1)k+r

zk+r
ψr

(

z2 + 1

z

)

(11.12)

+(−1)k−1(k − 1)!
(z2 + 1)k

zk
, for k ≥ 1,

and

(11.13) Pn,k(g(z)) = zk−n
k
∑

j=0

(−1)k−j
(

k
j

)

n!

(z2 + 1)k−j

∞
∑

r=0

(−1)r
(

j + r − 1

r

)(

2r + j

n

)

z2r.

The sum

1

(2n)!

2n
∑

k=1

1

k!
F (k)(g(z)P2n,k(g(z)),

with F (k)(g(z)) and P2n,k(g(z)) given by (11.12) and (11.13), is expanded in powers
of z. The constant term gives an expression for v2n.
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12. An alternative approach to the valuations of vn

The result of Theorem 1.2 is discussed here starting from a recurrence for zn =
4nv2n. Using Legendre inverse relations found in Table 2.5 of [15], the formula
(6.13) for v2n, namely

(12.1) v2n = (−1)n+1

[

1

n
+

n
∑

k=1

(−1)k
(

n+ k − 1

n− k

)

B2k

2k

]

,

is inverted to express the Bernoulli numbers in terms of the coefficients vn. The
authors wish to thank M. Rogers who pointed us to this inversion in [16].

Lemma 12.1. If

(12.2)
an
2n

=
n
∑

k=1

(

n+ k − 1

n− k

)

bk
2k

then

(12.3) bn =

n
∑

k=1

(−1)n−k

(

2n

n+ k

)

ak.

The inversion formula is used next to obtain a recurrence for a slight modification
of the coefficients v2n.

Theorem 12.2. Define zn = 4nv2n = −8nB∗
2n(−1). Then zn satisfies the recur-

rence

(12.4) zn = 2

(

2n

n

)

−
n−1
∑

k=1

(

2n

n+ k

)

zk − 2B2n.

Proof. The inversion formula in Lemma 12.1 is used with

(12.5) an = 2n

(

(−1)n+1v2n − 1

n

)

and bn = (−1)nB2n

to obtain from Theorem 6.4 the relation

(12.6) B2n =

(

2n

n

)

−
n
∑

k=1

(

2n

n+ k

)

2kv2k.

The result follows from here. �

The classical von Staudt–Clausen theorem shows that 2B2n is a rational num-
ber with odd denominator. The recurrence (12.4) shows the same is valid for zn.
Therefore

zn reduced modulo 2 = numerator of zn reduced modulo 2.

Proposition 12.3. The sequence zn reduced modulo 2 is periodic with basic period

{1, 1, 0}.
Proof. The proof is by induction on n. The induction hypothesis is that the pattern
{1, 1, 0} repeats from 1 to n− 1.

Reduce the recurrence (12.4) modulo 2 to obtain

(12.7) zn ≡ −
n−1
∑

k≡1, 2 mod 3

(

2n

n+ k

)

− 1.
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This may be written as

(12.8) zn ≡ −

⌊

n+1
3

⌋

∑

k=1

(

2n

n+ 3k − 2

)

−
⌊n
3 ⌋
∑

k=1

(

2n

n+ 3k − 1

)

− 1.

The proof is divided in three cases according to the residue of n modulo 3.

Case 1. Assume n = 3m. Then (12.8) becomes

z3m ≡ −
m
∑

k=1

(

6m

3m+ 3k − 2

)

−
m
∑

k=1

(

6m

3m+ 3k − 1

)

− 1

= −
m
∑

k=1

(

6m+ 1

3m+ 3k − 1

)

− 1.

The symmetry of the binomial coefficients shows that

m
∑

k=1

(

6m+ 1

3m+ 3k − 1

)

=
1

2

m
∑

k=−m+1

(

6m+ 1

3m+ 3k − 1

)

=
1

2

∞
∑

k=−∞

(

6m+ 1

3m+ 3k − 1

)

,

since the terms added to form the last sum actually vanish.
The evaluation of the sum

(12.9) F (m) =
∑

k

(

6m+ 1

3m+ 3k − 1

)

may be achieved by using the WZ-technology as developed in [14]. The authors
have used the implementation of this algorithm provided by Peter Paule at RISC.
The algorithm shows that F (m) satisfies the recurrence

(12.10) −64F (m) + 65F (m+ 1)− F (m+ 2) = 0.

The initial conditions F (1) = 42 and F (2) = 2730 give

(12.11) F (m) =
2

3
(64m − 1).

Therefore

(12.12)

m
∑

k=1

(

6m+ 1

3m+ 3k − 1

)

=
1

3
(64m − 1)

and then

(12.13) z3m ≡ −1

3
(64m + 2) ≡ 0 mod 2.

This completes the induction step in the case n ≡ 0 mod 3. The other two cases,
n ≡ 1, 2 mod 3, are treated by a similar procedure. The induction step is complete.

�

Corollary 12.4. If n ≡ 1, 2 mod 3, then ν2(zn) = 0.

Proof. The previous theorem shows that the numbers z3m+1 and z3m+2 have odd
numerators. �
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Note 12.5. The method used to obtain the values of zn modulo 2 does not ex-
tend directly to modulo 4 and 8. The corresponding binomial sums satisfy similar
recurrences, but now there are boundary terms and lack of symmetry prevents the
WZ-method to be used effectively.
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