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ABSTRACT: Joint adjustment of cryptic relatedness and population structure is necessary to reduce bias in DNA sequence
analysis; however, existent sparse regression methods model these two confounders separately. Incorporating prior biological
information has great potential to enhance statistical power but such information is often overlooked in many existent sparse
regression models. We developed a unified sparse regression (USR) to incorporate prior information and jointly adjust for
cryptic relatedness, population structure, and other environmental covariates. Our USR models cryptic relatedness as a
random effect and population structure as fixed effect, and utilize the weighted penalties to incorporate prior knowledge.
As demonstrated by extensive simulations, our USR algorithm can discover more true causal variants and maintain a lower
false discovery rate than do several commonly used feature selection methods. It can handle both rare and common variants
simultaneously. Applying our USR algorithm to DNA sequence data of Mexican Americans from GAW18, we replicated
three hypertension pathways, demonstrating the effectiveness in identifying susceptibility genetic variants.
Genet Epidemiol 38:671–679, 2014. © 2014 Wiley Periodicals, Inc.
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Introduction

Complex traits are likely to be influenced by many rare
and common genetic variants and environmental covari-
ates. Next-generation sequencing technologies provide great
potential for identifying both rare and common sequence
variants. Single-marker association tests bear poor statistical
power to identify associated rare variants due to their very low
frequencies. Generalized linear model provides an effective
approach to identify variant sets while adjusting for covari-
ates of unrelated individuals [Lee et al., 2012; Yi et al., 2011].
However, the assumption of independence between individ-
uals is frequently violated in sequence association studies. In
the presence of complex pedigree structure or/and cryptic
relatedness, it is challenging to correct for population struc-
ture [Price et al., 2010], especially for rare variants detection
[Mathieson and McVean, 2012]. Most existing sequence asso-
ciation methods do not jointly model relatedness, population
structure, and covariates.

Accurately pinpointing specific causal variants is neces-
sary for elucidating genetic architecture of a complex dis-
ease. Sparse representation models were established to select
a promising sparse set from a large number of variants [Wu
et al., 2009; Zhou et al., 2010], e.g., those within a gene or a
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pathway. Such models allow the size of a testing set (gene or
pathway) exceed the number of study participants [Fan and
Li, 2001; Zou and Hastie, 2005] by the use of regularization
terms (e.g., L0 norm and L1 norm). Although the L0 norm
penalty yields sparsest solution, its discontinuity makes the
problem to be NP-hard [Natarajan, 1995], which is nearly
infeasible for the regression model with a large number of
predictors. The L1 norm penalty or least absolute shrink-
age and selection operator (Lasso) is a well-developed and
computationally feasible method, with the relaxation of L0

norm penalty. If a particular restricted isometric property
holds, the solutions of Lasso and L0 norm penalty are iden-
tical [Candes and Tao, 2005]. However, this restriction is too
strong to have practical value. Recently, Lp norm (0 < p <

1), as an alternative relaxation, has aroused more interests,
which yields more sparse solutions than does the Lasso. De-
spite these merits, existent sparse representation algorithms
still suffer the limitations of aforesaid set (e.g., gene, pathway)
based association methods.

Tremendous DNA sequence data are of complex popu-
lation structure and relatedness, including known pedigree
structure and cryptic relatedness. These confounders, if not
appropriately adjusted for, may inflate false-positive rates
or deflate false-negative rates. Incorporating prior biological
information can boost statistical power. In this article, we
developed a unified sparse regression (USR) as an effective so-
lution to incorporate prior information and jointly adjust for
relatedness, population structure, and environmental
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covariates. Our algorithm adopts a modified kinship matrix
to account for the confounding of complex relationship be-
tween pedigree members on a quantitative trait [Thompson
and Shaw, 1990]. For the data of cryptic relatedness, we infer
the kinship matrix by the REAP algorithm [Thornton et al.,
2012]. Meanwhile, our USR models population structure
and other environmental covariates as fixed effects. To
allow proper sparsity and incorporate prior knowledge, our
USR algorithm applies a weighted regularization with Lp

norm (0 < p < 1) to select sparse representation—a sparse
subset from a large number (>sample size) of markers. Our
algorithm can automatically search for a sparse represen-
tation and allow users to determine the size of output set.
As demonstrated by extensive empirical comparisons and
real DNA sequence data analyses, our USR appears more
effective than do many existent sparse regression models.

Methods

In our USR model, relatedness is treated as a random ef-
fect, and population structure is treated as a fixed effect. This
model allows an arbitrary relatedness as captured by a cor-
responding kinship matrix. For an arbitrary p ϵ (0,1), the Lp

norm regularization is neither convex nor Lipchitz continu-
ous. To solve the Lp problem, we first compute the explicit
solution of the L0.5 problem [Xu et al., 2012b] for an ini-
tial point. Next, we solve the smoothed surrogate model of
Lp norm regularization by the smoothing conjugate method
[Chen et al., 2010]. To improve accuracy, we modify the
elastic-net regularization [Cho et al., 2010; Friedman et al.,
2007, 2010] to adjust for relatedness and choose an optimal
penalty parameter λ in terms of the Akaike information cri-
teria (AIC). Lastly, we use the stability selection method to
estimate the sparse regression coefficients.

The USR Method

Let n denote the total number of subjects, and m denote the
number of independent variables. Let Y = (y1, y2, . . . , yn)T

contain the trait values of the n subjects. We write X =

(x1, x2, . . . , xn)T , where xi = (xi1, xi2, . . . , xim)T contains
genotypic scores of subject i at m markers, genotypic score xij

is the individual copy number of the minor allele at marker j;
and W = (w1, w2, . . . , wL ), where wi = (wi1, wi2, . . . , win)T

represents fixed-effect confounders, e.g., population struc-
ture surrogates, age, and gender.

Joint Adjustment of Confounders

For data with a known pedigree structure, we consider
linear mixed-effect model:

Y = Wα + Xβ + ε (1)

where ε N(0, �), α = (α1, α2, . . . , αL )T and β = (β1,

β2, . . . , βm)T are vectors of corresponding regression coeffi-
cients. The error term ε summarizes the random effect due to
pedigree structure [Thompson and Shaw, 1990] and environ-

mental residual. To be explicit, � = σ2
�� + σ2

e In×n, where � is
the kinship matrix; �ij equals to twice the kinship coefficient
between subjects i and j; and I is identical matrix of order
n. We use EMMA software [Kang et al., 2008] to estimate
the variance components in � under the null of β = 0 and
fix them in our USR. For the data of cryptic relatedness, the
kinship matrix can be inferred by extent algorithm, e.g., the
REAP [Thornton et al., 2012]. For a given �, the likelihood
can be formulated as

L (α, β) =
1

(2π)
n
2
√|�| exp

(
–

(Y – Wα – Xβ)T�–1(Y – Wα – Xβ)

2

)

The log-likelihood is


(α, β) = – log(L (α, β)) ∝ (Y – Wα – Xβ)T�
–1(Y – Wα – Xβ)

The Generic Lp Regularization

A general form of regularized regression is given by

(αop t, βop t) = arg min
α,β

{
(α, β) + Pλ(β)} (2)

It is well known [Chen et al., 2010; Xu et al., 2012b] that Lp

(0 < p < 1) norm regularization term can give more sparse
solution than L1 norm based regularization, also known as the
famous Lasso. If we define the Lp norm based regularization
term as

Pλ(β) = λ||β||p
p = λ

n∑
i=1

|βi|p , 0 < p < 1,

then the problem becomes to find the minimizer

(αop t, βop t) = arg min
β∈Rm,α∈RL

f (α, β)

:= (Y – Wα – Xβ)T�
–1(Y – Wα – Xβ) + λ||β||p

p

(3)

In particular, if the data only contain unrelated subjects,
i.e.,� = I , � = (σ2

�
+ σ2

e )I , Eq. (3) collapses to the classic least
square sparse regression. Similar to other sparse regressions,
we define the selected risk variants to be the set of nonzero
regression coefficients, i.e., {i|βi =� 0}.

Incorporating Prior Information

The regularization term in Eq. (3) can be modified to in-
corporate prior knowledge. For this purpose, we introduce a
weighted regularization term. To be explicit, the weighted Lp

norm regularization is

(αop t, βop t) = arg min
β∈Rm,α∈RL

(Y – Wα – Xβ)T�
–1(Y – Wα – Xβ) + λ||γβ||p

p (4)

where γβ = (γ1β1, γ2β2, . . . , γmβm)T and γj ’s (>0) represent
marker-wise weights.
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An appropriate choice of weights can improve statistical
power. Each weight γj is prespecified, taking the genotypes,
covariates and prior knowledge into account. The weight
γj reflects the relative importance or preference of the jth
variant. On one hand, we can assign a particular marker with
small penalty weight, if we want to include the marker into
the sparse representation. On the other hand, a marker with
a large weight is more likely to be excluded from the sparse
representation.

There are several ways to determine the weights. For ex-
ample, we can give nonsynonymous SNPs or the SNPs in
the risk gene lower weights to increase their chances to enter
the model. Another way to assign weights is based on minor
allele frequency. When analyzing rare and common variants
together, we can assign lower weights to rare variants, in order
to compensate for their low frequencies. Because in practice
we do not know exactly which variants have high risk, the
weights should be assigned prudently.

In particular, if all γj = 1, Eq. (4) collapses to Eq. (3), which
is an unweighted one. The algorithm to solve Eq. (4) is almost
the same as for Eq. (3). The only difference is to replace
βj by γj βj . For the sake of simplicity, we just present the
algorithm for solving Eq. (3). We assume all variants are
equally weighted unless otherwise stated.

Solving the USR Problem

Generally, the Lp (0 < p < 1) norm based regularization
(Eq. (3)) is neither convex nor Lipschitz continuous, making
the solution computationally difficult and time-consuming.
We adopt the basic idea on nonconvex and noncontinuous
optimization [Zhang and Chen, 2009] to solve the minimiza-
tion problem of (3). To make the algorithm more stable and
faster, we establish a lower bound to further regularize local
optimal solution. Another issue with Lp norm regularization
is that the iterative algorithm can be easily trapped at a local
minimizer. Therefore, the choice of the initial point is crucial
for the iterative algorithm. For this reason, we use the solu-
tion of L0.5 norm regularization as the initial point for the Lp

regularization problem. The details are discussed below.

Smoothing Method for Lp Norm Regularization

We use a smoothing approximation to the objective func-
tion in (3) [Chen et al., 2010]

f μ(α, β) = (Y – Wα – Xβ)T�
–1(Y – Wα – Xβ) + λ||ψμ(β)||p

p

where ψμ(β) = (sμ(β1), sμ(β2), . . . , sμ(βn))T and

sμ(x) =

⎧⎪⎨
⎪⎩

|x| |x| > μ

x2

2μ
+

μ

2
|x| ≤ μ

The smoothing function f μ(α, β) is continuously differ-
entiable and strictly convex on the set of {x| max(x) ≤ μ}.
Moreover,

lim
μ↓0

f μ(α, β) = f (α, β)

All these properties show that this smoothing function is
a good approximation to the original one but makes the
problem easy to solve.

Lower Bound Theory

Based on the first- and second-order necessary condition
on the solution to the minimization problem, we derive a
lower bound, and a sufficient and necessary condition to
narrow the search of nonzero entries and guide the selection
of causal variants. In our algorithm, we utilize the lower
bound at each step to help refine the local minimizer.

The lower bound theory for the unified sparse model

Denote X ∗
p the set of local minimizers of objective formula (3)

For any β∗ ∈ X ∗
p derived from initial point β0, the following statements hold:

(i) Let L i = max[ λp (1–p )

2(AT �–1A)ii

1
2–p , ( λp

√
K

2||A ||||�–1 ||
√

f (α,β0)
)

1
1–p ] for any

β∗
i ∈ (–L i, L i ) ⇒ β∗

i = 0 where A := X 
 ∈ Rn×|
| is a submatrix of X ,
which consists of the jth columns of X, with j ∈ 
,

 = support(β∗) = {i|β∗

i =� 0}, K = ||β∗||0
(ii) The smallest eigenvalue of matrix Ã B̃ –1:λmin ≥ 1; where Ã = 2AT�–1A

and B̃ = λp (1 – p )diag(|β∗
i |p –2), and β∗

i =� 0

The detailed proof of this theory is described in the sup-
plementary material.

L0.5 Norm Regularization

The L0.5 norm regularization has an analytical threshold
operator [Xu et al., 2012b] compared with arbitrary Lp (0 <

p < 1) norm problem, which can be easily and fast solved.
In addition, the L0.5 regularization always yields more sparse
solution than that of using Lp when 1/2 < p < 1, and shows no
significant difference from the one when 0 < p < 1/2 [Xu et al.,
2012a]. Thus in our algorithm, we first apply L0.5 thresholding
algorithm [Xu et al., 2012b] to obtain the solution of L0.5

problem and then use the solution of L0.5 as the initial point
to search the minimizer of the Lp norm based regularization
problem.

The L0.5 regularization model is given by the following
formulation (5)

min
β∈Rm,α∈RL

(Y – Wα – Xβ)T�
–1(Y – Wα – Xβ) + λ||β||1/2

1/2

(5)

where ||β||1/2 = (
∑m

j =1

√|βj |)2

According to [Xu et al., 2012b], the solution of (5) can be
obtained by the following thresholding operation

β∗ = Rλμ,1/2(β∗ + μX T�
–1(Y – Wα∗ – Xβ∗))

where Rλμ,1/2( �) : R
n → R

n is the half thresholding opera-
tor. It is given as follows:

Rλμ,1/2((x1, x2, . . . xm)T)

= (f λμ,1/2(x1), f λμ,1/2(x2), . . . , f λμ,1/2(xm))T
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where

f λμ,1/2(x) =

⎧⎪⎨
⎪⎩

2

3
x

(
1 + cos

(
2π

3
–

2

3
ϕλμ(x)

))
|x| >

3
√

54

4
(λμ)

2
3

0 otherwise

and ϕλμ( �) satisfies ϕλμ(x) = arccos( λμ
8 ( |x|

3 )– 3
2 ), μ = ||X ||2

We name our algorithm to solve the problem (5) as the hy-
brid L0.5-SCG algorithm, where SCG stands for the smooth-
ing conjugate gradient.

Unified sparse representation algorithm

Step 1: Data normalization:
n∑

i=1
xij = 0, 1

n

n∑
i=1

x2
ij = 1, for j = 1,2, . . . ,m.

Step 2: For any given λ, p, set iterative index r = 0, ε = 0.0001; initialize α
(0)
l = 0, for l =

1,2, . . . ,L; β(0)
j = 0, for j = 1,2, . . . ,m.

Step 3: Update α(r+1) = (WT W)–1WT (Y – Xβ(r)).
For j = 1, . . . ,m,
update β(r+1) = Rλμ,1/2(β(r) + μX T�–1(Y – Wα(r+1) – Xβ(r))).
Step 4: Apply the lower bounds to regularize β(r+1) and use the SCG algorithm (Zhang

et al., 2009) with the initial point β(r+1) to find the minimizer β(r+1)
p of objective

function (3).
Step 5: Calculate ||β(r+1)

p – β(r)
p ||l2

If ||β(r+1)
p – β(r)

p ||l2 < ε stop; otherwise return to Step 3.

Then, β(r+1)
p is the final solution.

Tuning Parameter Selection

It is well known that the setting of regularization (tuning)
parameter λ in Eqs. (3)–(5) controls the trade-off between
data fitting fidelity and the use of prior knowledge. A larger
λ results in a more sparse solution and vice versa.

The selection of optimal regularization parameters is a dif-
ficult problem. If computing time is not a concern, it is helpful
to optimize the objective function over a grid of points and
monitor how new predictors enter the model as λ decreases.
Another way is to minimize either the Bayesian information
criterion (BIC) or AIC as a function of λ. Also, we can use
cross-validation to select optimal λ. After the comparison
of these methods in our simulations, we choose the AIC as
our variable selection criterion. For our model, we have the
following form of AIC [Cetin and Erar, 2002]:

AIC = 2k + n(log((Y – Wα – Xβ)T�
–1(Y – Wα – Xβ)) + 1)

The goal is to find an optimal λ so that the AIC value can
be minimized. Because λ is the key parameter to determine
the sparsity level, it is crucial to understand the relationship
between AIC and λ. However, there is no explicit expression
of AIC(λ). So we use the discrete search in log-scale to find
the optimal λ that yields the smallest AIC value.

However, a major drawback of AIC procedure is that it
cannot control false-positive rate or family-wise error rate.
So we use the idea of stability selection [Meinshausen and
Bühlmann, 2010] to further control the false-positive rate
based on the selected λ.

The basic idea about stability selection is to bootstrap the
data, and then calculate the frequency of the variables to be se-
lected. The higher frequency of the selected variables implies

that they are more important. Hence, we can develop a new
rank of importance of each variable (i.e., variants), and then
a frequency threshold is applied to select final risk variants.
An advantage of the stability selection over AIC selection
is that the expected number of falsely selected variables or
false-positive rate can be asymptotically controlled.

The detailed procedure of hybrid AIC and stability se-
lection is described in the algorithm part of supplementary
material. Despite the hybrid AIC and stability selection pro-
cedure, we also provide an adaptive method to make the
solution to have predetermined k-sparsity.

Unified Lp algorithm with predetermined sparsity

Step 1: Data normalization:
n∑

i=1
xij = 0, 1

n

n∑
i=1

x2
ij = 1, for j = 1,2, . . . ,m.

Step 2: For any predetermined sparsity level k, set iterative index r = 0, ε = 0.0001;
initialize α

(0)
l = 0, for l = 1,2, . . . ,L; β(0)

j = 0, for j = 1,2, . . . ,m.

Step 3: Set B (r) = β(r) + μX T�–1(Y – Wα(r) – Xβ(r)), and denote [|B (r)|]k to be the
kth largest element of |B (r)|.

Step 4: Update λ(r) =
√

96
9μ

([|B (r)|]k)
3
2 .

Step 5: Update α(r+1) = (WT W)–1WT (Y – Xβ(r)).
For j = 1, . . . ,m,
update β(r+1) = R

λ(r)μ,1/2(β(r) + μX T�–1(Y – Wα(r+1) – Xβ(r))).

Step 6: Apply the lower bounds to regularize β(r+1) and use the SCG algorithm
[Zhang and Chen, 2009] with the initial point β(r+1) to find the minimizer
β(r+1)

p of objective function (3).
Step 7: Calculate ||β(r+1)

p – β(r)
p ||l2 .

If ||β(r+1)
p – β(r)

p ||l2 < ε stop; otherwise return to Step 3.

The β(r+1)
p is the final outcome with k-sparsity.

Results

In this section, we empirically compared our USR algo-
rithm with single-marker test (χ2 test), elastic-net, orthogo-
nal matching pursuit (OMP), focal underdetermined system
solver (FOCUSS) [Rao and Kreutz-Delgado, 1999], Random
Forest [Chen and Ishwaran, 2012; Goldstein et al., 2010],
and Gemma [Zhou and Stephens, 2012]. We first compared
these algorithms under our own simulation design with and
without family structure. In addition, we compared the al-
gorithms under the simulated data from Genetic Analysis
Workshop 17 (GAW17).

Simulation I: Unrelated Individuals

To validate our USR, we performed simulation experi-
ments based on the Encyclopedia of DNA Elements (EN-
CODE) data. This dataset contains 522 haplotypes and 1,688
SNPs. We used this haplotype pool to generate genotypes and
the corresponding phenotypes, i.e., X and Y, respectively, in
the linear mixed-effect model (3). The phenotypes are sim-
ulated based on the linear model with assigned causal SNPs
under the controlled heritability. We implemented L0.1, L0.9,

L0.5, elastic-net, OMP, and FOCUSS methods, respectively.
The elastic-net and weighted elastic-net programs were de-
veloped according to Friedman’s papers [Friedman et al.,
2007, 2010]; OMP and FOCUSS [Rao and Kreutz-Delgado,
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Figure 1. Partial ROC for methods comparison under population de-
sign of 1,000 unrelated individuals. Each point (FPR, TPR) corresponds
to a specific λ value, where FPR is false-positive rate, and TPR is true
positive rate.

1999] programs were downloaded from the link in their pub-
lications.

In this simulation, we generated 1,000 samples and
give the weight for each marker as follows: weight =

2
√

MAF (1 – MAF ) where MAF is the minor allele fre-
quency.

The detailed procedure of our experiment is as follows:

Step 1: Set the risk haplotype ratio to be 25% (risk haplo-
types/all haplotypes); set the iterative index k = 0, I(0) =

∅.
Step 2: k = k + 1; randomly select an SNP as causal variant

C(k); count the index of the haplotypes that contain C(k),
and denote this index set as I(k) (risk haplotypes).

Step 3: I(k) = I(k – 1)�I(k); if I(k) > 0.25, jump to Step 4,
otherwise return to Step 2.

Step 4: Generate 10,000 genotype samples from the pool
randomly.

Step 5: Calculate each sample’s genetic score S, i.e., how many
risk haplotypes this sample has; S = 0, 1, 2.

Step 6: Generate each sample’s phenotype: y = b ∗ S + ε, ε ∼
N(0,1), b = sqrt(0.01/(0.99 ∗ var(S))).

To evaluate our methods, we compared them with the
single-marker test (χ2 test), elastic-net, OMP and FOCUSS
respectively. We also extended our family adjustment and
weighted model to the one with elastic-net penalty. For the
numerical algorithm, we used the cyclical coordinate descent,
computed along a regularization path.

In this article, the TPR is defined by the number of selected
true variants divided by the total number of true variants; and
the FPR is defined by the number of selected false variants
divided by the total number of false variants.

Table 1. The error rate of using optimal λ selected by the AIC

N = 1,000, H2 = 0.05 TPR FPR

Elastic-net 0.0745 0.0151
L0.5 0.0805 0.0213
L0.1 0.0021 1.5883 × 10–4

L0.9 0.0018 1.2202 × 10–4

Table 2. The error rate of variables by the hybrid AIC and stability
selection method

N = 1,000, H2 = 0.05 TPR FPR

Elastic-net 0.0729 0.0142
L0.5 0.0818 0.0208
L0.1 0.0337 2.0743 × 10–3

L0.9 0.0261 2.3173 × 10–3

From Figure 1, by calculating the area under the receiver
operating characteristic (ROC) curve (AUC), we can con-
clude that weighted models with the use of L0.5 and L0.1 reg-
ularization term perform best among all the methods listed
above, and the classic single-marker test (χ2 test) has the low-
est power. The FPR and TPR of FOCUSS and OMP methods
were stuck in a low range, which is difficult to perform a com-
parison of AUC. In addition, FOCUSS became unstable with
the tuning parameter getting larger and its TPR decrease with
FPR increase. For the sake of stability and efficiency, we did
not perform OMP and FOCUSS methods in the following
sections.

Tables 1 and 2 are generated by the average of 100 replicate
simulations with 1,000 samples and 0.05 heritability. Appar-
ently, the best method should have the highest TPR, whereas
lowest FPR. However, there always exists a trade-off between
TPR and FPR.

By comparing Table 1 with Table 2, we find that L0.5 and
elastic-net had quite similar performance under both AIC
and stability selection. Under AIC, L0.1 and L0.9 appeared to
be too conservative and yielded extremely low FPR and TPR.
However, the stability selection rectified the conservativeness
to make corresponding FPR closer to the preset type I error
threshold (0.05). Therefore, we recommend hybrid stability
selection with AIC as a better choice and just present results
of using hybrid AIC and stability selection in the following
sections. Furthermore, the L0.9 was shown not as good as L0.1

and L0.5, which is also supported by the part of “comparison
of different Lp norm regularization” in the supplementary
material. So we mainly focused on L0.1 and L0.5 regularization
methods for the remaining of the article.

Simulation II: Admixed Families

We downloaded the genotype data of region ENr113.4q26
from the ENCODE project Consortium. We inferred 180
CEU (Centre d’Etude du Polymorphisme Humain in Utah,
USA) and 180 YRI (Yoruban in Ibadan, Nigeria) haplotypes.
We observed 1,693 SNPs in total. At each SNP, we chose
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the minor allele in the YRI haplotype data (f YRI ≤ 0.5) as
the reference allele. Following previous association study on
African Americans [Qin et al., 2010], we adopted ω = 0.8 vs.
� = 0.2 as YRI-CEU admixture weights. To “genotype” one
admixed subject in the ENr113.4q26 region, we randomly
chose one and another haplotype from the YRI or CEU hap-
lotype datasets with probabilities ω vs. �. In this simulated
admixture, the frequencies of reference alleles at the 1,693
SNPs (fADX = ωfYRI + �fCE U) range from 0.0011 to 0.5722,
and 295 SNPs are of f ADX ≤ 0.02. This simulation design
includes three major steps.

Step 1. Generate Parental Dataset

For each family, we generated father and mother indepen-
dently. Each subject is composed of two haplotypes; each time
we have 80% chance of randomly selecting a haplotype from
YRI, and 20% from CEU. The local ancestry ai ∈ {0, 1, 2} for
the ith subject is the number of haplotypes from YRI data.
This design does not model recombination in the small re-
gion (ENr113.4q26). Therefore, ancestry ai is the same for all
SNPs in a specific subject.

Step 2. Generate Nuclear Family With Two Children

Two children are generated for each family. To generate one
child, we randomly selected one haplotype from father and
the other from mother. We simulated N(=200) families with
the same family structure, which is composed of two parents
with two children.

Step 3. Generate Trait Values

To be explicit, for each person, we use the following model
to generate trait values.

Yi = bX iβ + εi, (ε1, ε2, . . . εn)T ∼ N (0, �) (6)

where � = diag(�1, �2, . . . , �N )
In our simulation, the covariate matrix for each family is

�j =
2

3
� +

1

3
I

where � =

⎛
⎜⎜⎝

1 0 0.5 0.5
0 1 0.5 0.5

0.5 0.5 1 0.5
0.5 0.5 0.5 1

⎞
⎟⎟⎠

is the kinship matrix. To simulate heritability H2 = 0.05, the
true model we used is formula (6) where b = H√

(1–H2)Var(Xβ)
,

and � = diag(�1, �2, . . . , �N ); in our simulation, the co-
variate matrix for each family is �j = 2

3� + 1
3 I .

Using this model, we mainly compared the results with
and without pedigree adjustment. Thus, we evenly assigned
causal variants to include both rare and common variants and
exclude the influence of weighted method. In this simulation,
we did not consider any prior knowledge and set all the weight
coefficients to be 1.

Figure 2. Methods comparison under family design of 200 unrelated
nuclear families. (A) The partial ROC curves of five methods without
adjusting for relatedness. (B) The partial ROC curves of two methods
with adjusting for relatedness (by estimated kinship matrix and genuine
kinship matrix) vs. the ordinary method without adjusting for relatedness.

First, we compared our USR algorithm with other feature
selection methods (e.g., Random Forest and Gemma), using
the genuine family structure. Second, to illustrate the capa-
bility of the USR to adjust for cryptic relatedness, we inferred
the kinship matrix using the REAP [Thornton et al., 2012]
and adopted the inferred kinship matrix when applying our
USR.

Figure 2(A) shows the comparison among several methods
without adjusting for family structure. For the Random For-
est, we ranked the variables by their importance factors, and
then selected different number of variables. Finally, we drew
the corresponding ROC. The ROC and AUC indicate that
L0.1 is the best method and the single-marker test performs
the worst.
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Table 3. The error rate of variables selected by hybrid AIC and
stability selection method

N = 800, H2 = 0.05 TPR FPR Partial AUC AUC

Elastic-net, ordinary 0.0811 0.0223 0.1012 0.6693
Elastic-net, estimated kinship 0.1291 0.0237 0.1152 0.6964
Elastic-net, genuine kinship 0.1351 0.0243 0.1316 0.7271
L0.5, ordinary 0.0811 0.0169 0.1737 0.7789
L0.5, estimated kinship 0.2320 0.0201 0.1758 0.7808
L0.5, genuine kinship 0.2432 0.0205 0.1891 0.8126
L0.1, ordinary 0.0435 3.623 × 10–3 0.1714 0.7884
L0.1, estimated kinship 0.0501 4.521 × 10–3 0.1918 0.8063
L0.1, genuine kinship 0.0526 4.753 × 10–3 0.2125 0.8198
Gemma 0.1648 0.5941

In Figure 2(B), adjusting genuine relatedness and estimated
relatedness outperformed the ordinary regression, which ig-
nores the relatedness. The result of the USR using estimated
kinship matrix is close to that of the USR using genuine kin-
ship matrix. Hence, the estimated kinship based USR method
is reliable for cryptic relatedness data analysis. The adjust-
ment of a real kinship matrix appeared a bit better. The ROC
also indicates that when the FPR or type I error is low, the
L0.1 solution is the best choice; when the FPR is higher, the
L0.5 solution is the best choice. The Gemma method and
elastic-net sparse representation falls in between, indicating
that it is a more stable solution. The Gemma method and
elastic-net method are comparable and both outperform the
single-marker test and Random forest.

Table 3 is generated by the average of 100 replicate sim-
ulations with 200 nuclear families (800 samples) and 0.05
heritability. The partial AUC is calculated based on the cutoff
(FPR = 0.3). In terms of AUC and partial AUC, the L0.1 and
L0.5 family adjustment models are the best models. The result
confirms again that the model with adjusted family struc-
ture yields higher TPR whereas lower FPR and FDR (false
discovery rate).

Analysis of the GWAS Data From GAW17

To further demonstrate the effectiveness of our USR, we
compared it with competitors under an official simulation
from the GAW17. This dataset contains real genotypes of
24,487 SNPs from 3,205 genes on 697 subjects, together with
simulated phenotypes of these subjects. We chose replicate
1 of Q1 as outcomes and applied the algorithms to locate
promising SNPs from genotype data. Both the weighted and
unweighted versions of our USR detected five causal SNPs
within two genes (FLT1 and KDR). Three of the causal SNPs
were rare variants but were missed by the single-marker test
(Fig. 3, Table 4). Again, in this comparison, our USR inclined
to discover rare casual variants with higher true positive than
the single-marker test.

Analysis of the Sequence Data From GAW18

To illustrate effectiveness of our algorithm to locate rare ge-
netic variants, we applied it to the analysis of Mexican Amer-

Figure 3. The partial ROC of chromosome 13 data. The weights are
generated by the correlation coefficients between phenotypes and
variants

icans sequence data from the GAW18. This dataset contains
next-generation sequencing data of 850 subjects within 21
large families.

Simulated Phenotype Analysis

First, we analyzed the simulated diastolic blood pressure
(DBP), where DBP was set to be influenced by 1,243 variants
of 245 genes and 1,040 variants of 205 genes, respectively.
After quality control, we selected 504 subjects within the
region of 1,244 variants from three genes (SLC35E2, TNN,
and MAP4) that influenced the phenotypic data. All the data
we used were from the first visit of the longitudinal data.
We connected raw DBP data with covariates and population
structure (adjusted by the first 10 principal components of the
genotypic matrix) and pedigree structure by our generalized
sparse regression model.

In this analysis, our USR algorithm appeared to have better
TPR and better AUC compared to the algorithms without
adjusting pedigree structure, while maintaining almost the
same FPR level (Table 5). The pedigree adjustment appeared
to be both necessary and beneficial as shown by this set of
results.

Real Data Analysis

Finally, we applied the proposed USR to analyze real DNA
sequence data on DBP and systolic blood pressure (SBP)
from GAW18. After quality control, we obtained GWAS data
of 783 Mexican Americans with 438,790 SNPs and next gener-
ation sequencing data of 506 Mexicans with 6,824,165 SNPs.
When analyzing the GWAS data using our USR algorithm,
we obtained sparse representation for each chromosome by
choosing the entire chromosome as a window. However, for
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Table 4. Identified casual rare variants for phenotype Q1

Causal gene and SNPs Single-marker test Elastic-net Weighted elastic-net L0.5 Weighted L0.5 L0.1 Weighted L0.1 MAF

KDR/C4S1874 × � � � � � � 0.00717
KDR/C4S1877 � � � � � � � 0.164993
KDR/C4S1884 × × � � � � � 0.0208
KDR/C4S1887 × × × � � � � 0.00717
FLT1/C13S523 � � � � � � � 0.066714
FLT1/C13S523 × × � � � � � 0.004304

Note: A “�” indicates that the corresponding marker was detected as a causal marker by a particular method. A “×” indicates that the corresponding marker was not detected as
causal marker by a particular method.

Table 5. The error rate of GAW18 data

N = 504, SNPs = 1,243 TPR FPR Partial AUC AUC

Elastic-net 0.1739 0.0704 0.1064 0.6436
Elastic-net family 0.2609 0.1605 0.1095 0.6786
Elastic-net family and weight 0.2174 0.0573 0.1247 0.6816
L0.5 0.1739 0.0459 0.1131 0.6947
L0.5 family 0.2174 0.0524 0.1170 0.7074
L0.5 family and weight 0.2174 0.0745 0.1426 0.7125
L0.1 0.2609 0.0983 0.1233 0.7008
L0.1 family 0.2174 0.0524 0.1366 0.7117
L0.1 family and weight 0.2609 0.0983 0.1417 0.7142
Gemma 0.1107 0.5638

Figure 4. The Manhattan plot for SNPs on odd numbered chromo-
somes. The P-values were computed from single-marker tests. The red
circles stand for the markers selected by our USR. We used SBP+DBP
as the phenotype. The genome-wide nominal significance level was set
to be 10−7, as shown by the green horizontal line.

the sequence data set, it is too large to be analyzed as a whole
window. Thus, we divided each of the large chromosomes
(1, 3, 5, 7, 9) into two equal parts and obtained their sparse
representations separately (Fig. 4).

Based on above algorithm, we analyzed GWAS and se-
quence data by our USR separately to find the susceptible
genetic variants. Combining the significant variants selected

by both GWAS and sequence data, we identified 23 promising
genes (supplementary Table 3S). We also identified three sig-
nificant pathways relevant to hypertension by pathway-wise
SKAT [Wu et al., 2011]. The most significant pathway (P =

3.24 × 10–8) was Glioma, including BRAF, SHC3, CAMK2B,
EGFR, and PDGFRB. An independent study [Houben et al.,
2004] suggested that Glioma pathway would be associated
with hypertension through potentially neurocarcinogenic ef-
fects of antihypertensive medication. The second most signif-
icant pathway (P = 2.74 × 10–7) is the regulation of actin cy-
toskeleton pathway, including GNA12, BRAF, EGFR, PDGFRB
and PIP5K1B. This pathway was identified to be associated
with hypertension by an independent study [Tripodi et al.,
1996]. The third most significant pathway (P = 3.87 × 10–6) is
chronic myeloid leukemia pathway, including BRAF, RUNX1,
SHC3, and MECOM. This pathway, as suggested by indepen-
dent studies [Dumitrescu et al., 2011; Guymer et al., 1993],
would highly influence benign intracranial hypertension and
pulmonary arterial hypertension.

Furthermore, we found some new candidate genes and
pathways that were not reported in the previous independent
study. For example, FMO1 (P = 9.81 × 10–5) is a risk gene
of cardiovascular disease [Mendelsohn and Larrick, 2013],
which is usually associated with hypertension. Another sus-
ceptible gene is AGBL1 (P = 8.16 × 10–4), which is associated
with carotid plaque [Dong et al., 2012], and prehypertension
is associated with significantly increased carotid atheroscle-
rotic plaque [Hong et al., 2013]. We also report long-term
depression pathway (P = 4.21 × 10–6) as a significant pathway.
It might cause depression that is a risk factor of hypertension
[Meng et al., 2012].

Conclusion

Many existent sparse regression algorithms assume unre-
lated subjects. Such algorithms fail to adjust for complex
pedigrees and cryptic relatedness as often occur in the ge-
nomic data. In this article, we have proposed the USR algo-
rithm for variant selection from DNA sequence data with an
arbitrary intraindividual relationship and population struc-
ture. Our USR algorithm allows informative weighting to
incorporate prior knowledge. This approach provides a flex-
ible way to adjust for preference or risk variants. Extensive
simulation results indicated that a properly predetermined
weighting scheme can notably improve selection accuracy of
causal variants.
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Our algorithm can handle both rare and common vari-
ants simultaneously. The ability of our algorithm to pinpoint
causal variants, especially rare causal variants, was clearly
demonstrated by intensive simulations (see the details in
supplementary material). We suggest using Lp norms (0.1 <

p < 0.5) in the model because these regularization terms pro-
vide better performance in terms of AUC, TPR, and FPR. For
the sake of computational speed, L0.5 norm is a better choice.
In particular, our algorithm can solve the low sample size
but high dimensional feature problem, i.e., sample size is less
than the number of variants, as often happens in genomic
studies.

Like existent methods, our algorithm has some limitations.
First, it focuses on a single variant effect on a trait of inter-
est. A more powerful strategy would be to group multiple
variants and incorporate group wide information into the
model. Doing so, however, would scarify single-marker res-
olution. Second, our algorithm assumes linear relationship
between phenotype and genotype, which may be unrealistic
for many scenarios in practice. Extension to nonlinear re-
gression models calls for additional efforts. Last, it deserves
further investigation on how to choose the optimal tuning
parameter and the optimal set of features.
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